*Технологии шумеров, индейцев – УГЛЕРОД древесный уголь. Именно углерод-уголь, а не зола,- это сожженный окисленный углерод = просто щёлочь - мыло. Это овощи без нитратов и болезней на 4000 лет, сделать слой почвы толщиной 70см, смесь 10-30% древесного угля с местной почвой. Это домики и амбары для бактерий. И даже в тундре будут яблони цвести. Это лучшиенанотехнологии древних цивилизаций.

Углерод - сахар для бактерий почвы. *Но самое главное, чего не знали почвоведы – это то, что при сгорании древесины таким способом, при температурах 400-500 градусов, смолы древесины не сгорают, а твердеют и покрывают тонким слоем поры древесного угля. Эти же отвердевшие смолы обладают высокой способностью к ионному обмену . Т.е. ион какого-нибудь вещества легко к ним присоединяется и затем не вымывается даже дождями. Однако, он может быть усвоен корнями растений или гифами микоризных грибов.

Многочисленные бактерии, живущие на корнях растений, выделяют энзимы, которые способны растворять минералы почвы . Образующиеся при этом ионы быстро присоединяются к застывшей смоле древесного угля, а растения уже по мере надобности могут эти ионы с угля «снимать» своими корнями , т.е. питаться. *Антрацит содержит 95% углерода , каменный уголь 75-95% углерода, бурый уголь 65-70% углерода. Древесный уголь, нефть, газ. * Прекращает Гнилую порчу Зубов , если чистить их ежедневно угольным порошком липы и промывать холодною водою. * Номер патента – 2111195.- Углегуминовое удобрение содержит бурый уголь и добавку , в качестве которой используют отходы биохимических производств на основе микробного синтеза в количестве 1-10 % от массы бурого угля. *Но как быть, когда надо получать сверх- урожай? Вот тогда - то у Пономарева родилась мысль использовать в качестве углеродистого удобрения... уголь . Например, в тонне ангренского угля, содержится: углерода - 720 - 760 кг, водорода - 40 - 50, кислорода - 190 - 200, азота - 15 - 17 кг, серы - 2 - 3 кг и ряд важных для жизни растений микроэлементов. Перемолотый в пыль уголь вносится в почву, где он успешно перерабатывается бактериями и в дальнейшем превращается в питательную среду для растений. *Уголь для бактерий, как сахар для людей. *В Подмосковье Владимир Петрович Ушаков, последователь и соратник Пономарёва, выращивал и собирал по тонне картофеля с сотки . *Бурый уголь (углерод) спасёт Россию от голода. Результаты: из одного зёрнышка вырастало по 40-50 стеблей пшеницы . Листья - почти в два пальца шириной, стебли толстые, крепкие. Колосья туго набиты крупным зерном. Вот он - фантастический урожай.*Живое вещество обитает в тонком слое почвы, глубиной от 5 до15 см . Именно этот тонкий слой в 10см создал всё живое на всей суше, писал В.И.Вернадский. Почему от 5 см? Потому, что верхний слой служит своеобразной покровной коркой. В нём мало живого вещества - из-за солнечной радиации и перепада температур. Верхний слой 8-10 см обеспечивает жизнь аэробным бактериям, а нижний 10-15см- анаэробным, для которых воздух губителен . *Книжечка: В.И.Дианова "672ц картофеля с гектара в засушливый год". 1947 год издания. -"Количество бактерий в почве сильно сокращается за зиму и особенно ранней весной, а восстанавливается лишь к концу июня . Простейшим бактериальным удобрением может быть небольшое количество хорошей огородной земли (2-3кг на 100м2), взятой на зиму в условиях комнатной температуры и сохранённой во влажном состоянии . В этих условиях полезные бактерии не только перезимуют, но и размножатся . Весной такую землю и разбрасывают по участку и тотчас заделывают". *Азотная кислота, реагируя с минеральными соединениями почвы, превращается в соли азотной кислоты, которые хорошо усваиваются растениями. *Без кислорода и углерода, не происходит перевод азота в усвояемые формы (нитрификация), не работают кислоты, растворяющие фосфор, калий и другие элементы. Без каналов дождевых червей, в почву не засасывается вода (внутренняя роса), не живут микробы, черви и насекомые.*Нитрификация – превращение азота воздуха в нитраты . Делают бактерии, азотная кислота , в присутствии углерода. *Полезные камнееды.- Эти микроорганизмы так называются потому, что в буквальном смысле слова «едят» камни, уголь, песок . А так как вы уже знаете, что у микробов нет рта и других нам привычных пищеварительных органов, то «едят» они благодаря тому, что сначала выделяют из себя ферменты, которые и делают им пищей камни, песок, бетон и, конечно же, любые виды органики. Это они остаются на Земле самыми многочисленными . Профессор Е.Я.Виноградов. Евгений Яковлевич всю жизнь изучал «камнеедов» и разработал технологию быстрого, рентабельного и массового производства из них белка для животноводства . А до него проблемой использования «камнеедов» занимался с 1940 года профессор В.Г.Александров из Одесского сельхозинститута. И до них было множество исследователей. По- научному эти бактерии именуются силикатными. Потому что создают свою биомассу, усваивая фосфор, калий и кремний из соответствующих минералов, а углерод и азот – из атмосферы. В нашей почве содержащих фосфор материалов хватит бактериям на 600 лет, калия – на 200. То же самое относится к кремнию. Кремнезем самый распространенный материал, его хватит на миллиарды лет. Размножайте у себя «камнеедов» на огородах, в садах, на полях хозяйств. Более того, силикатные «камнееды », как и азотобактер (клубеньковые бактерии), образуют и выделяют в почву стимулятор роста корней растений – гетероауксин . В целом, на почве, где размножаются «камнееды», растения дружно всходят, отличаются крепостью и высотой роста и более ускоренным созреванием урожая. *А я просто поливал грядку разбавленным кислым молоком , - признался Ник, лукаво улыбаясь, - и урожай получил больше всех.Так и должно быть. Потому что целлюлозу разрушают молочнокислые бактерии . А я уже поливал грядки остатками бражки. Какой эффект? Отличный! Росло все – как на дрожжах , теперь уже в прямом смысле. Учитывая, что главным компонентом ЭМ являются дрожжи и молочно-кислые бактерии, которых и без того достаточно в почве и вокруг нас, предлагаем в качестве закваски органических настоев использовать обычную сахарно-дрожжевую бражку. *В 200-литровую емкость (бочку) кладется, 1 литр сыворотки, 3 литра браги, любая органика, лопата песка, 300гр сахара. Настоять 1 неделю и использовать. *В итоге получается: на земле «не самой лучшей» азота хватит на срок от 35 до 70 лет. А на черноземной – от 120 до 260 лет . Только не думайте, что азотфиксирующие бактерии живут только на корнях бобовых культур. Они живут везде, где для них есть ПИЩА и условия. А усилению процесса азота фиксации способствует большое количество света (не затеняйте растения) и внесение суперфосфата калия. В качестве углеродных соединений прежде использовали коксующийся уголь, но уже четверть века назад его заменили более дешевые нефть и особенно газ . *Химический состав «сахар-песок» на 100гр.- Углеводы-99,8гр , железо- 0,3мг, калий-3мг, кальций- 2,0мг, натрий- 1,0мг, вода- 0,1гр… Калорийность 374,3 ккал.*Подкормка сахаром. На горшок диаметром 10см 1-2 чайную ложку сахарного песка. Песок насыпают на поверхность земли перед поливкой один раз в неделю . Ссылаясь на опыты авторитетных мичуринцев М.П. Аркадьева, К.В.Соловьева и др.,- домашние способы удобрения. *Ещё древние Шумеры применяли уголь (но не золу -это уже щелочь) древесный как удобрение и получали урожай в 5-10 раз больше современных. *В 1921 году применялся измельченный древесный уголь. Однако немецкий кактусовод Рудольф Зуур (Rudolf Suhr) наблюдал, что при пересадке укоренившихся кактусов из древесного угля в землю, нежные виды быстро теряют свои корни . Ему пришла мысль, что это можно предотвратить, если растения оставить в угле и умело их кормить. *Древесный уголь является прекрасным антисептиком и естественным природным удобрением, предотвращает процесс гниения , регулирует влажность почвы, абсорбирует соли. Кроме того, уголь впитывает воду и минеральные вещества, отдавая их растению по мере высыхания почвы. Также положительными качествами является и то, что он легкий, пористый, нейтральный, инертный. Используя древесный уголь в качестве дренажа, его укладывают на дно горшка слоем в 2см. Сверху тоже насыпают слой угольков 1см фракцией 2-5мм. *Древесный уголь классифицирован в системе стандартов (ГОСТ) - ГОСТ 7657-84. Древесный уголь зарегистрирован в качестве пищевого красителя под кодом E153. Уголь прекрасный антисептик для корней растений и углеродное удобрение . Кузнечные горны работали на древесном угле. Наиболее распространенными способами получения были кучное и ямное углежжение. Родиной промышленного производства древесного угля следует считать Урал. Демидовское чугунно-литейное производство поднялось именно на древесном угле . Все знаменитые решетки и другие виды чугунного литья, украшавшие Петербург, были сделаны на Урале. В отличие от дров, при правильном розжиге, он не даёт дыма и пламени . *В зависимости от используемого сырья вырабатывается древесный уголь марок А (высший сорт), Б и В. Для того, чтобы из древесины получился уголь, ей нужно пройти процесс пиролиза, разложения без доступа воздуха. *В бронзовом веке древесный уголь стал одним из столпов развивающейся культуры. Его изготавливали из тлеющих головней и использовали как топливо, которое не вызывает угара человека . На сегодняшний день во всем мире производят около 9млн. тонн древесного угля в год . Львиная доля производства приходится на Бразилию, около 7,5 млн. тонн. Россия, несмотря на большое количество леса, производит около 350 тысяч тонн в год. Предложение не покрывает спрос, поэтому в Россию импортируют уголь из Украины, Китая, Белоруссии. Потребление древесного угля на душу населения в России составляет менее 100гр в год. В то же время, среднестатистический европеец расходует более 20кг угля в год, японец - более 60 кг в год.Например, в Бразилии благодаря древесному углю производят чугун. Такой чугун не содержит элементы фосфора и серы, которые попадают в него при использовании каменноугольного кокса , а расход угля составляет всего 0,5 тонны на одну тонну чугуна. Чугун, полученный при помощи древесного угля, более крепкий и не поддается разрушению. По требованиям ГОСТа существует несколько марок древесного угля: «А», «Б» и «В». Отличаются они типом древесины, разлагаемой без доступа воздуха в специальных аппаратах. Так, марку «А» получают из твердолиственной древесины, «Б» – из смеси твердо- и мягко лиственной древесины, «В» – из смеси твердо-, мягко лиственной и хвойной древесины. *При правильном управлении температурой, в таком современном оборудовании 1кг древесного угля можно получить из 3-4 кг леса.

*Самым полезным считается березовый уголь : она лечит заболевания легких и желудочно-кишечного тракта, в том числе инфекционные, применяется приатеро склерозе, ишемии, артритах и аллергии. *Липовый уголь используют при простудных заболеваниях, простатите и почечнокаменной болезни. *Дубовый уголь лечит диарею, нормализует внутриглазное, внутричерепное и артериальное давление. *Сосновый уголь применяют при болезнях мочеполовой системы и желудочно-кишечного тракта, диабете и онкологических заболеваниях. *Кедровый уголь помогает при артритах, радикулитах, снимает мышечные боли. *Осиновый уголь используют для ле­чения колитов, воспаления придатков, заболеваний бронхов и легких. *При укоренении черенков растений в воде очень полезно бросить в воду кусочек древесного угля Уголь тормозит развитие бактерий и снижает вероятность загнивания черенков. *Многие цветоводы добавляют древесный уголь в субстрат при пересадке растений с нежными корнями, легко загнивающими от повреждения. *Большинство вредителей избегает растений, которые были обработаны раствором угля или удобрены его золой: им не нравится запах древесного угля, а неорганические соединения губительным образом воздействуют на их репродуктивную способность . *До прибытия европейцев в Южную Америку, индейцы бассейна Амазонки изготавливали древесный уголь и им удобряли свои красные и желтые неплодородные тропические почвы. Эта, ставшая черной (terra preta) земля , даже сейчас (через почти 2000 лет ) продолжает оставаться плодородной . *Секрет плодородия заключается в том, что древесный уголь, благодаря пористой структуре, становится домом для микроорганизмов, увеличивая их численность в почве, и предоставляя им своеобразную защиту.

*На этом рисунке представлены образцы выращивания растений с древесным углем (справа) и без него (в центре). Слева - древесный уголь, обогащенный азотом . Прекрасно растёт и с добавлением извести в уголь .

*В 1541 году отряд испанских конкистодоров во главе с Франциско де Ореллана отправился в плавание по Амазонке вниз по течению из притока реки в районе нынешнего Перу. Всего они проплыли более 5 тысяч километров с остановками по берегам реки, иногда удаляясь вглубь территории. Однако от многочисленных тропических болезней вскоре они почти все погибли . Однако Ореллана остался жив и вернулся в Испанию. После своей смерти он оставил дневники, в которых сообщал, что в этой экспедиции они видели огромную страну, с большим населением, огромными городами, связанными между собой хорошими насыпными дорогами среди джунглей, с рынками, изобилующими продуктами питания и многочисленными изделиями из золота. Ореллана назвал эту страну El Dorado (Эльдорадо).


***Вначале внимание почвоведов (а среди них первым был Вим Сомброек из Голландии) привлекли клочки необычайно плодородной земли в Перу , которые индейцы прозвали Terra Preta, что в переводе с испанского означает Черная Земля . Дело в том, что земли в районе Амазонки (как и все тропические земли) очень неплодородны. Это красные и желтые почвы с большим количеством окисей алюминия и других металлов (так называемые оксизолы), на которых практически ничего не растет (из сельскохозяйственных культур), кроме редких местных сорняков. Однако земли Terra Preta имели сильно черный цвет и были необычайно плодородными . Они давали (и сейчас дают) хороший урожай даже без всяких удобрений. Земля эта оказалась настолько хороша, что местные фермеры начали ее экспортировать , как землю для цветочных горшков. Когда Вим Сомброек приехал в Перу и начал исследовать эту землю, местные фермеры рассказали ему еще более удивительную вещь: что верхний слой земли, который они снимали с Terra Preta (порядка 20 см) за 20 лет полностью восстанавливается сам собой. Сомброек произвел замеры толщины земли (а это оказалось в среднем 70 см ) и в дальнейшем этот факт подтвердился: земля Terra Preta само восстанавливается. Скорость восстановления - 1 см в год. Удивительно также и то, что эта черная земля очень плодородна, а красная или желтая земля всего в нескольких десятков метров от нее почти абсолютно неплодородна. Когда был проведен химический анализ этих земель, то выяснилось, что они абсолютно идентичны по хим. составу. И геологический анализ показал, что эти почвы имеют одно и то же геологическое происхождение. Отличие было только лишь в одном: черная земля содержала в изобилии древесный уголь, от 10% до 30%. Возникло предположение, что эти черные почвы имеют антропогенное происхождение. Радиоуглеродный анализ показал, что возраст этому углю более 2000 лет. Следовательно, на этом месте существовала древняя цивилизация! В дальнейшем на территории бассейна реки Амазонки было обнаружено 20 больших участков земли Terra Preta, и множество маленьких, общей площадью, равной площади Франции. *По оценкам ученых на этой территории проживало порядка 3 миллионов человек . Это была развитая цивилизация со сложной социальной структурой. Куда же делась цивилизация? По предположению ученых, экспедиция Франциско де Ореллана принесла с собой индейцам Амазонки вирусы, к которым у индейцев не было иммунитета, и поэтому вскоре индейцы погибли от массовой эпидемии . Затем джунгли быстро заняли эту территорию. Поэтому уже через 100 лет после Ореллана европейцы ничего не обнаружили. Однако, современные фото-снимки с самолетов позволили увидеть, что все эти заплаты Terra Preta связаны между собой многочисленными дорогами, которые индейцы прокладывали в джунглях при помощи насыпей, и которые затем, после гибели цивилизации, быстро были поглощены джунглями. Радио- углеродный анализ показал, что некоторым участкам насчитывается по 4000 и более лет. Однако интерес к Terra Preta во всем мире все больше и больше возрастает. Почему эти участки плодородной земли и сейчас, спустя 4000 лет остаются плодородными даже без внесения удобрений, ни органических, ни минеральных? На сегодняшний день выяснено, что индейцы добавляли в землю обычный древесный уголь, который они получали из растущих в изобилии в джунглях деревьев. Древесный уголь же химически инертен. Почему же он дает такой странный эффект – делает почву плодородной на тысячелетия , да еще и безо всяких удобрений? *Древесный уголь получают путем медленного (холодного) сгорания древесины при ограниченном доступе кислорода . Полученный таким образом уголь обладает следующими свойствами: 1. Химически инертен и поэтому может пролежать в земле тысячелетия, не разлагаясь . 2. Обладает высокой абсорбцией, т.е. может впитать в себя избыток, например, окислов алюминия, которых очень много в тропических почвах, и которые сильно подавляют рост корневой системы растений. 3. Обладает большой пористостью и вследствие этого огромной общей площадью поверхности, если считать и поверхность пор. *Но самое главное, чего не знали почвоведы – это то, что при сгорании древесины таким способом, при температурах 400-500 градусов, смолы древесины не сгорают, а твердеют и покрывают тонким слоем поры древесного угля. Эти же отвердевшие смолы обладают высокой способностью к ионному обмену . Т.е. ион какого-нибудь вещества легко к ним присоединяется и затем не вымывается даже дождями. Однако, он может быть усвоен корнями растений или гифами микоризных грибов. Многочисленные бактерии, живущие на корнях растений, выделяют энзимы, которые способны растворять минералы почвы . Образующиеся при этом ионы быстро присоединяются к застывшей смоле древесного угля, а растения уже по мере надобности могут эти ионы с угля «снимать» своими корнями , т.е. питаться. Кроме того, многие вещества, необходимые растениям, попадают в почву вместе с дождями, и это тоже – немалое количество. Особенно много в дождях азота , который тоже не вымывается из почвы, а улавливается древесным углем . В результате все вместе получается, что такая почва способна прокормить все растения сама по себе, без всяких удобрений. Единственное удобрение, которое нужно – древесный уголь.По изучению влияния древесного угля на плодородие в почве были поставлены многочисленные эксперименты. Продолжаются эти эксперименты и сейчас. Результаты оказались ошеломляющими. *Берутся, например 3 участка тропической почвы. 1,- контроль. 2,- химические удобрения. 3,- древесный уголь + химические удобрения . Урожай на участке древесный уголь + химические удобрения превосходит урожай на участке просто с химическими удобрениями в 3-4 раза. Есть и еще одно важнейшее преимущество: поскольку уголь в земле не разлагается , то надолго происходит его изъятие из атмосферы. Но есть и еще одно важнейшее преимущество: Разработан и запатентован способ , как из древесины получать древесный уголь, обогащенный еще и азотом . *Несколько кусочков древесного угля можно растолочь ступкой в порошок, ссыпать в небольшую баночку и использовать затем в качестве "йода" для дезинфекции срезов у растений. *Интенсивный рост пшеницы, картошки и др. 90-100 дней, за это время на каждом гектаре будет усвоено растениями около 20000 кг СО2, из которых 70% или 14000 кг, должно поступить из почвы . А кто удобряет 1га почвы 14 тоннами углерода, только Америка, Европа, Канада, Китайцы и сейчас этому обучают голодающую Африку. А в России угля, нефти, газа, древесного угля, как удобрения используют только для цветов и Китайцы в Сибири удивляют всех своими урожаями. *Углерод С (carboneum).- Встречается в природе в виде кристаллов алмаза, графита или фуллерена и других форм и входит в состав органических (уголь, нефть, газ, организмы животных и растений и др.) и неорганических веществ (известняк, пищевая сода, и др.). Углерод широко распространен, но содержание его в земной коре всего 0,19%, в воздухе 0,0314%. *Само название «графит», происходящее от греческого слова, означающего «писать», предложено А.Вернером в 1789. *К аморфным формам углерода, не образующим кристаллов, относят древесный угол. *Углерод обладает уникальной способностью образовывать огромное количество соединений, которые могут состоять практически из неограниченного числа атомов углерода. Многообразие соединений углерода определило возникновение одного из основных разделов химии - органической химии . Углерод на Солнце занимает 4-е место после водорода, гелия и кислорода. *Для того чтобы уменьшить количество углекислого газа в атмосфере, ученые предлагают растительные остатки, образующиеся как отходы лесной промышленности и сельского хозяйства, не сжигать, а превращать в древесный уголь, который затем можно вносить в почву . Будучи весьма устойчивым, он будет сохраняться там столетиями. Смысл этой операции в том, чтобы углерод, изъятый из атмосферы в ходе фотосинтеза, надолго вывести из обычного круговорота. ***Сода - общее название технических натриевых солей угольной кислоты . *Название «сода» происходит от растения Salsola Soda, из золы которого её добывали. *Сода - общее название технических натриевых солей угольной кислоты . *Сода пищевая (питьевая) (гидрокарбонат натрия, бикарбонат натрия, двууглекислый натрий, Natrium bicarbonicum - формула NaHCO3) - кислая натриевая соль угольной кислоты. Водные растворы питьевой соды имеют слабощелочную реакцию. *Кальцинированная сода карбонат натрия Na2CO3 . Кальцинированная сода встречается в природе в виде минералов, содержится в подземных рассолах. Кальцинированной соду называли потому, что для получения её из кристаллогидрата приходилось его кальцинировать (то есть нагревать до высокой температуры). *Основная масса углерода встречается в виде карбонатов природных (известняки и доломиты), горючих ископаемых - антрацит (94-97% С), бурые угли (64-80% С), каменные угли (76-95% С). Горючие сланцы (56-78% С), нефть (82-87% С), газы природные горючие (до 99% CH4), торф (53-62% С), битумы и др. Углерод находится в виде углерода диоксида CO2, в воздухе 0,046% CO2 по массе, в водах рек, морей и океанов в ~ 60 раз больше . *При атм. давлении и т-ре выше 1200К алмаз начинает переходить в графит, выше 2100К превращение совершается за секунды. *Древесный уголь, добавленный в грунт, забирает все нитраты в себя и овощи, и картошка получаются экологически чистые без нитратов и болезней . А 30% древесного угля в грунт и удобряйте аммиачной селитрой, уголь всосёт в себя все излишки, а корни могут извлекать из угля все удобрения всасыванием, сколько им надо. Уголь тут является ХРАНИЛИЩЕМ усвояемых нитратов , которые выдаются растениям по первому ИХ требованию автоматически. Это домики и амбары для бактерий. Это лучшиенанотехнология древних цивилизаций. *Липа- мясо, начинающее гнить, будучи пересыпано угольным порошком, теряет зловонье и получает прежнюю Свежесть. Зола Липы противодействует гнилостной заразе и укрощает даже Антонов огонь - гангрену. Прекращает Гнилую порчу Зубов , если чистить их ежедневно угольным порошком липы и промывать холодною водою.

- А.С. N1205915 СССР больным аллергическими заболеваниями предлагают пить натощак активированный уголь по 1,5 гр. Серия экспериментов на животных показала высокую эффективность кишечного очищения с помощью синтетического угля, добавляемого в пищу. Результатом этих экспериментов является резкое увеличение СРОКА ЖИЗНИ животных, в среднем 43,3%!!! Микрокристаллическая целлюлоза АНКИР - Б тоже чистит всё, и даже сосуды лимфатические и кровеносные. *Carbo activatus. Carbo activalis. Уголь активированный - уголь животного или растительного происхождения (костный, из некоторых сортов древесины, из твёрдых оболочек семян тёрна), получают из ископаемых или древесных углей . Специальный тонкопористый активированный уголь производят путем термической обработки без доступа воздуха из некоторых полимеров . *Разжечь костер из сухих веточек березы . Когда веточки превратятся в угли (но не в пепел), залить их водой или засыпать снегом, высушить и сложить в банку с крышкой. Дальше использовать вместо таблеток. Одна таблетка соответствует кусочку угля величиной с вишню. Угли можно истолочь в порошок. Тогда 1 ч. ложка будет соответствовать трем таблеткам. *Активированный уголь (Activated charcoal). Применение.- Диспепсия, заболевания, сопровождающиеся процессами гниения и брожения в кишечнике (в т.ч. метеоризм), повышенная кислотность и гиперсекреция желудочного сока, диарея. Острые отравления (в т.ч. алкалоидами, гликозидами, солями тяжелых металлов), заболевания с токсическим синдромом - пищевые токсикоинфекции, дизентерия, сальмонеллез. О жоговая болезнь в стадии токсемии и септикотоксемии, хроническая почечная недостаточность, хронический и вирусный гепатиты , цирроз печени, бронхиальная астма, атопический дерматит. Активированный уголь применяют при поносах, метеоризме, пищевых и лекарственных отравлениях, отравлениях солями тяжелых металлов, наркотиками и снотворными . *Активированный уголь прекрасный препарат, но злоупотреблять им и пользоваться ежедневно в течение длительного времени - значит нарушать протекающие в организме процессы, так как активированный уголь способен лишить нас необходимых гормонов и ферментов, а также получаемых с пищей питательных веществ и витаминов. *Активированным углем лечил Гиппократ, им спасали от отравления Александра Невского , а древние римляне очищали углем вино, пиво и воду. *В русских деревнях эпилепсию лечили следующим образом: взять из печки несколько горящих древесных углей и чашку с водой. В эту чашку сначала сдувать в воду пепел, а затем туда положить и сами угольки. Потом помолиться перед иконой, читая «Отче наш», и дать выпить больному этой воды 3 раза. Через 11 дней (на 12-й) надо лечение повторить. Припадки прекратятся уже после первого раза . Второй раз - для закрепления. Рецепт многократно проверен и очень хорошо работает. *При импотенции. Сжечь дрова липы , оставшийся уголь растолочь в порошок и употреблять с чаем по 1 ч. ложке 2-3 раза в день. Это рецепт Ванги .

*Возьмите таблетку активированного угля и начинайте тереть ей зубы, пока они не будут полностью покрыты чёрным. Подождите минуту-две. Затем прополощите ротовую полость. ВСЁ!!! Зубы белые и ни единого чёрного пятнышка от угля .

*Народные рецепты отбеливания зубов. Но модное сегодня фото отбеливание и лазерное отбеливание не всем по карману. Но помните, что отбеливающие процедуры надо проводить не чаще одного раза в неделю. Все отбеливающие средства стирают поверхность эмали, и их частое применение ведет к истончению эмали . Не забывайте тщательно полоскать рот после процедуры. *Пищевая сода. Перекись водорода. Активированный уголь . Соль. *Популярный восточный рецепт. Достаточно использовать его 1 раз в неделю. Обмакните сухую зубную щетку в густую сметану или йогурт и почистите зубы. Оставьте на 5 минут , а потом прополощите рот. Повторите процедуру 3-5 раз в течение дня. *Обмакните влажную щетку в сухое молоко и почистите зубы. Подержите, а затем прополощите рот. Кальций, содержащийся в молоке, укрепляет зубную эмаль и вместе с молочной кислотой хорошо отбеливает зубы .

Бурый уголь, гуматы аммония и натрия вносили из расчета 2 тонны на гектар в полевых условиях, просеянные через сито, отверстием в диаметре 1 мм.[ ...]

БУРЫЙ УГОЛЬ - ископаемый гумусовый уголь наиболее низкой степени углефикации - переходная форма от торфа к каменному углю. Теплота сгорания 22,6-31 МДж/кг. Образуется из продуктов разложения остатков растений.[ ...]

Такое испытание бурых углей Башкирии было проведено Д. Кирилловой. Она применяла бурый уголь в сочетании с минеральными удобрениями и с навозом. Его установлено ускорение созревания капусты и помидоров (ранняя капуста на черноземной почве созрела на 7-9 дней, а помидоры на темнобурых пойменных почвах на 10-12 дней раньше, чем на участках, где бурый уголь не внесен).[ ...]

В варианте: фосфор + бурый уголь + аммиачная вода активность каталазы была равной контрольному варианту, а в варианте фосфор + ЫЩОН даже ниже.[ ...]

Добываемый в ФРГ и ГДР бурый уголь частью поставляется потребителям как исходный уголь - кулак, частью сжигается в топках котлов непосредственно на шахтных электростанциях, частью перерабатывается в химические продукты по аналогии е каменным углем; При переработке же в брикеты уголь должен быть подвергнут сушке для снижения влажности. Как для каменного, так и для бурого углей были разработаны процессы пневматического обогащения без применения воды. Сепарация угля ж породы при пневматическом обогащении происходит в токе воздуха, нагнетаемого вентиляторами.[ ...]

Дома в ГДР отапливают, сжигая бурый уголь, поэтому в ТБО много вещества минерального - коричневой золы. Для обеспечения «питания» микробов необходима добавка органических веществ.[ ...]

На станциях, где используется бурый уголь, процесс мокрой обработки зольной пыли требует применения отстойников, оборудованных скребковыми механизмами.[ ...]

К коммерческим относят твердые (каменный и бурый уголь, торф, горючие сланцы, битуминозные пески), жидкие (нефть и газовый конденсат), газообразные (природный газ) виды топлива и первичное электричество (электроэнергия, произведенная наядерных, гидроэлектрических, тепловых, ветровых, геотермальных, солнечных, приливных и волновых станциях).[ ...]

В качестве сорбентов применяют активированный уголь, силикагель, бурый уголь, торф, доломит, каолин, болотную руду, золу, сланец, коксовую мелочь и др.; при очистке сточных вод роль сорбентов выполняют также хлопья коагулянтов (гидроокисей металлов) и активный ил аэро-тенков. В тех случаях когда выделяемые из сточных вод вещества представляют ценность, обычно пользуются активированным углем, который поддается регенерации. В других случаях используются менее ценные материалы, например, некоторые виды золы, бурый уголь или торф, которые потом сжигаются или вывозятся.[ ...]

Активность каталазы 18 июля в вариантах: фосфор + бурый уголь, один фосфор и фосфор + перегной была в 1,5-2 раза выше, чем на контроле.[ ...]

Как следует из графика, кривые прохождения хлора через битуминозный уголь А и бурый уголь были практически неразличимы. То же справедливо и для битуминозных углей В и С. Результаты показывают, что эффективность работы реактора не очень чувствительна к параметру 0,25Лпйп> когда значение его изменяется в пределах 0,94-0,74 см3/г. Ниже этого значения эффективность быстро уменьшается (значение параметра 0,25Аайа уменьшается так же быстро).[ ...]

Для повышения сорбционной ёмкости почвенных пород применяют перегной, торф, бурый уголь, лигнины. Подобные «экраны» позволяют сдерживать миграцию пестицидов в водоёмы.[ ...]

Известно, что к местным удобрениям относятся также смешанные удобрения на основе бурых углей. По данным академика АН УССР П. А. Власюка на Украине площади посевов, на которых применяются смешанные удобрения, содержащие в качестве- одного из компонентов бурый уголь, достигают 150-200 тысяч га. Эти удобрения дают прибавку урожая: сахарной свеклы в средном около 30 ц/га, картофеля 20-30 ц клубней с гектара, озимой пшеницы и зерна кукурузы, а также других зерновых культур по 2,5-3 центнера и больше с га. Применение смешанных удобрений на основе третичных бурых углей Южно-Уральского бассейна в опытах выращивания овощей также оказалось весьма эффективным (Д. Кириллова).[ ...]

Для сточных вод газогенераторных станций предлагались фильтры из газифицирующегося сырья (бурый уголь, древесные стружки и т. д.). Все эти фильтры, несмотря на высокий процент смолозадержания, мало применимы, так как быстро засмоливаются по всей своей толще. Дальнейшая работа фильтров возможна лишь при полной замене фильтрующего материала.[ ...]

Урожай зерна в них повысился по сравнению с контролем на 79-116%. Варианты с одним фосфором и фосфор + бурый уголь обеспечили менее значительные прибавки урожая бобов. Урожай зерна здесь повысился соответственно на 72 и 65%. Таким образом, сопоставляя полученные данные урожайности кормовых бобов с содержанием различных форм фосфатов в почве, можно проследить здесь определенную связь. Наибольшие прибавки в урожае бобов отмечались на тех вариантах, которые характеризовались наибольшей подвижностью фосфатов, а именно, варианты: фосфор + перегной, фосфор + аммиачная вода и фосфор + бурый уголь + аммиачная вода. Конечно, нельзя не считаться и с прямым влиянием перегноя и аммиачной воды на урожай растений.[ ...]

По данным Н. А. Базякиной, для бытовых сточных вод Aij = 31,5, для сточных газогенераторных станций, перерабатывающих бурый уголь. М2= 15,4.[ ...]

В качестве фильтрующей среды могут быть использованы природные и искусственные (кварцевый песок, дробленый гравий, антрацит, бурый уголь, доменный шлак, горелые породы, керамзиты, мраморная крошка) или синтетические (пенополиуретан, полистирол, полипропилен, лавсан, нитрон) материалы. Природные материалы применяют в дробленом (гранулированном) виде определенных фракций, а искусственные - в дробленом либо в волокнистом или тканом виде. К фильтрующим материалам относят также металлические сетки квадратного и галунного плетения, которые устанавливают в микрофильтрах, барабанных сетках, фильтрах «Вако» и других сетчатых аппаратах.[ ...]

Внимание специалистов все больше привлекают природные углеродные сорбенты. К ним относятся многие природные органические материалы, такие как бурый уголь, кокс, торф, мох, солома, бумага, шерсть, размолотая кукурузная лузга, рисовая шелуха, древесные отходы и т.д. .[ ...]

Ну, а в конечном итоге органическое вещество в рассеянном виде захороняется в горных породах или формирует его скопления - торф, горючие сланцы, каменный и бурый уголь, а также нефть и природный газ.[ ...]

Одна из таких работ выполнена на котле ПК-24 Иркутской ТЭЦ №10. Результаты испытаний после его реконструкции приведены на рис. 6.11. На котле сжигался азейский бурый уголь и черемховский каменный марки Д. Как видно из рис. 6.11, после реконструкции котла содержание 1 ЮХ снизилось на 40-50%. Другим положительным примером является работа котла ТП-230 ТЭЦ-17 Мосэнерго, на котором сжигаются подмосковный бурый уголь и природный газ. На нем внедрение технологии упрощенного трехступенчатого сжигания позволило снизить концентрацию МОх при сжигании угля с 750 до 450-480 мг/м3, при сжигании газа - с 300-390 до 75-90 мг/мэ. Значения химического и механического недожогов и q4 при внедрении новой технологии сжигания не возросли.[ ...]

При химической обработке раствора, например, углещелочным реагентом, возникает потребность снизить щелочность раствора. Для снижения шелочности применяют бурый уголь или ССБ.[ ...]

Породы Мг - Кг в значительной степени представлены глинистыми разностями. В отдельных стратификационных подразделениях есть гравийно-галечниковые отложения и бурый уголь. В этой толще выделяются следующие общности пород: Т2+3 - Т3 -алевролиты, песчаники, глины, гравелиты, галечники, бурь», уголь; -2 - пески, песчаники, глины; - К2 - пески, песчаники, глины, известняки; Ы1 - алевролиты, пески, гравий, галечники, бурый уголь.[ ...]

В качестве фильтрующего материала могут быть использованы кварцевый песок, дробленый гравии, коксовая мелочь, а также все виды газифицируемого твердого топлива (бурый уголь, торф, древесина). Выбор материала производится в зависимости от вида сточных вод и наличия фильтрующего материала.[ ...]

Процесс выделения эмульгированных тонкодисперсных смол производится в фильтрах. Сорбционным материалом могут служить металлическая стружка или коксовая мелочь, а также бурый уголь, торф, опилки.[ ...]

В табл. 8.4 приведена характеристика наиболее часто приме няемых активных углей .[ ...]

В качестве фильтрующего материала для выделения тон» кодиопергированных смол применяют грубую смолу, стальную стружку, коксовую мелочь, кварцевый песок и все виды отходов газифицируемого топлива (бурый уголь, антрацит, торф и древесину в виде стружки и опилок).[ ...]

Понизители фильтрации. Кроме неорганических щелочных реагентов (едкий натр, аммиак, сода и др.), неорганических коллоидных материалов (бентонит) и гуматных реагентов на основе природного органического сырья (бурый уголь, торф, сапропели) для этой цели используются различные природные и синтетические высокомолекулярные соединения различной структуры.[ ...]

Для уничтожения дурнопахнущих выбросов при сушке осадков сточных вод часто этой операции предшествует введение в них дезодорирующих добавок. Ими могут служить, в частности, измельченный активированный мягкий бурый уголь и/или хлористый калий в количестве соответственно 0,1-0,4 и/или 0,1-0,25 частей на единицу массы сухого вещества отхода (Заявка 4142253 ФРГ).[ ...]

Говоря о газификации углей, И. Ф. Тевосян, возглавлявший тогда Бюро по металлургии, топливной промышленности и геологии при Совете Министров СССР, отмечал на съезде, что Щекинский газовый завод, уже работавший на подмосковных бурых углях, при развитии сможет производить в год 1 млрд. м3 газа, 100 тысяч т серной кислоты и ряд других химических продуктов. Только это, не считая снабжения природным газом, обеспечивало возможность прекратить завоз в Москву до 1,5 млн. т подмосковного угля с 30% золы и около 4% серы, загрязнявших воздушный бассейн города. Указывалось на целесообразность газифицировать не только бурый уголь, но и газовый каменный уголь, и получать газ, высококачественное топливо в виде полукокса и одновременно несколько десятков наименований различных химических продуктов. При таком комплексном использовании углей стоимость искусственного газа может быть снижена почти до стоимости природного газа. Для государства это наиболее целесообразный способ использования твердого топлива, и экономическая эффективность его не может идти ни в какое сравнение с неполноценным сжиганием угля в топках.[ ...]

Метод последовательной обработки угля серной кислотой и аммиаком является универсальным способом утилизации, отработанных кислот как концентрированных, так и разбавленных. Он заключается в следующем: Серной кислотой обрабатывается) раздробленный третичный бурый уголь, брикетная пыль или отходы угля в соотношениях 1: 1 или в др. соотношениях. Полученная кислая смесь (продукты сульфирования угля и избыток серной кислоты) подвергается нейтрализации газообразным аммиаком, аммиачной водой или аб-газами азотно-туковых производств, содержащими аммиак. Полученная рыхлая сыпучая масса может быть использована как комплексное органо-аммиачное удобрение.[ ...]

На большинстве объектов основных производств газовой промышленности в воздухе рабочей зоны содержатся следующие вредные вещества: углеводороды, сероводород, диоксид серы (сернистый газ), оксид углерода (угарный газ), оксиды азота, пыль (цемент, барий, апатит, известь, бурый уголь, песок).[ ...]

В доочистке сточных вод можно непосредственно использовать ископаемые угли без какой-либо обработки. Сорбционная способность ископаемых углеродсодержащих материалов падает с увеличением степени их метаморфизма. Поэтому обычно сорбционная способность уменьшается в последовательности: торф - бурый уголь - каменный уголь - антрацит. В районах добычи торфа его можно с успехом использовать для удаления красителей и СПАВ из сточных вод предприятий текстильной промышленности. Сорбционная емкость его по СПАВ типа НП-1 и ОП-Ю достигает 70-150 мг/г .[ ...]

Производство любого сорбента, даже из отходов, - это особый технологический процесс, рентабельность которого резко уменьшается при снижении производительности установок. На локальных очистных сооружениях, где расходуется 1-10 т сорбента в год и регенерация его нецелесообразна, можно использовать природные углеродные сорбенты: торф, бурый уголь и кокс. Сорбционная емкость этих материалов в 3-10 раз ниже, чем у промышленных АУ, однако их низкая стоимость, доступность и возможность дальнейшего использования в качестве топлива позволяют широко использовать их как для предварительной очистки, так и собственно очистки сточных вод.[ ...]

Для внесения микроэлементов в почву можно воспользоваться различными отходами промышленности, содержащими эти элементы и эффективность которых уже проверена. На некоторые примеры из этих отходов уже было указано выше (мартеновские шлаки Белорецкого металлургического комбината, пиритные «хвосты» и др.). Значительную ценность для сельского хозяйства представляют также бурый уголь и торфы Башкирии.[ ...]

Метод КТН - комбинированной сухомокрой технологии обеспыливания и обессери-вания дымовых газов (рис. 2.16), предложенный Магдебургским комбинатом тяжелого машиностроения (Германия). Применение этой технологии целесообразно, если образующаяся впроцессе сжигания топлива зола обладает свойством абсорбировать SO2. Технология КТН предназначена для парогенераторов со слоевой топкой пар о производительностью 6,5 и 10 т/ч, в которых в качестве топлива применяют бурый уголь.[ ...]

Весьма хорошим критерием в оценке эффективности различных удобрений являются показатели структурных элементов урожая. Особенно оно резко сказалось на образовании органов репродукции. Анализы позволяют отметить существенное влияние углегумата аммония на улучшение элементов структуры урожая, что является следствием повышенного энергетического потенциала растительного организма более полным оттоком минеральной пищи в органы плодоношения и некоторыми другими факторами. Положительное влияние гуматов на биохимические процессы в почве, которые привели к изменению состояния питательных веществ в почве, оказали существенное влияние на интенсивность физиологических процессов пшеницы, что имело решающее значение при формировании урожая и сказалось на его величине. Углегумат аммония (аммонизированный бурый уголь) привел к резкому повышению урожая яровой пшеницы. От его применения урожай яровой пшеницы возрос в 4 раза, а соломы - в 5 раз. Внесение бурого угля и углемата натрия оказалось вообще мало эффективным в условиях опыта (табл. 6). Применение углегуматов оказало положительное влияние на продуктивность сахарной свеклы.

УДК 631.417.2: 631.95

С. Л. Быкова, Д. А. Соколов, Т. В. Нечаева, С. И. Жеребцов, З. Р. Исмагилов

АГРОЭКОЛОГИЧЕСКАЯ ОЦЕНКА ПРИМЕНЕНИЯ ГУМАТОВ ПРИ МЕЛИОРАЦИИ ТЕХНОГЕННО НАРУШЕННЫХ ЛАНДШАФТОВ

С середины XX века препараты на основе гу-миновых веществ занимают все большее место в разработке инновационных технологий. Гумино-вые препараты (ГП), получаемые из природных ресурсов (угля, торфа, донных отложений и др.), в значительной степени наследуют свойства гуми-новых веществ исходного сырья. Поэтому по функциональной активности они действуют как мелиоранты и препараты для детоксакации, реми-диации и рекультивации деградированных и загрязненных почв . ГП находят широкое применение в сельском хозяйстве в качестве стимуляторов роста растений, так как усиливают ферментативный аппарат клетки растения, в результате чего активизируются ростовые процессы надземных органов и формирование корневой системы, а также участвуют в формировании почвенной структуры и влияют на миграцию питательных элементов .

Внесение в почву препаратов гуминовых кислот или гуминовых удобрений на их основе приводит к прибавке урожая сельскохозяйственных культур до 20-25 %, снижает нормы внесения минеральных удобрений и повышает их окупаемость, способствует улучшению агроэкологиче-ской обстановки . Особенно хорошо заметна такая прибавка на почвах с малым содержанием гумуса .

В России ГП широко используются в виде гу-матов натрия, калия и аммония. Так, в экспериментах с различными культурами высших растений показано, что применение промышленных гуматов натрия, калия и аммония, независимо от источника сырья для их производства, в оптимальных дозах заметно стимулирует прорастание семян, улучшает дыхание и питание растений, увеличивает длину и биомассу проростков, усиливает ферментативную активность и сокращает поступление в растения тяжелых металлов и радионуклидов .

Среди различной продукции выделяются ГП, получаемые из бурых углей, широкий спектр биологического действия которых позволяет использовать их в качестве удобрений и стимуляторов

роста при возделывании сельскохозяйственных культур.

Кроме того, способность гуминовых веществ сорбировать токсичные соединения, дает возможность применять эти препараты при мелиорации загрязненных территорий, что поможет решить природоохранную проблему рекультивации техногенно нарушенных ландшафтов.

Цель работы - изучить эффективность гума-тов натрия и калия при выращивании сельскохозяйственных культур в условиях техногенно нарушенных ландшафтов.

Для достижения данной цели были поставлены следующие задачи.

1. Выяснить влияние различных форм (рядовые, сажистые) гуматов натрия и калия на рост и развитие сельскохозяйственных культур (пшеница яровая, травосмесь) в условиях техногенно нарушенных ландшафтов;

2. Изучить влияние различных способов внесения (замачивание семян, полив) ГП на рост и развитие выращиваемых культур;

3. Оценить влияние разных видов субстрата (лессовидный суглинок, техногенный элювий), характеризующимися различными физическими свойствами, на эффективность ГП.

Исследования проводились на отвалах Лист-вянского угольного разреза и Атамановском стационаре Института почвоведения и агрохимии СО РАН, расположенных в лесостепной зоне Кузнецкой котловины.

В качестве субстратов для закладки экспериментальных площадок были выбраны инициальные эмбриоземы, представленные техногенным элювием углевмещающих пород и лессовидными суглинками вскрышных пород. Использование этих субстратов, благодаря не значительному содержанию в них гуминовых веществ педогенной природы (гумуса менее 1%), позволяет более достоверно оценить влияние ГП на рост и развитие растений .

Закладку и проведение микрополевых опытов, а также аналитическую работу выполняли общепринятыми методами .

Таблица 1. Основные физические и агрохимические свойства субстратов

Субстрат Плот- ность Пороз- ность Содержание частиц, % рНвод. N-N03 Р2О5 легк. а

г/см3 % <0,01 мм <1 мм мг/кг

I 1,82 36,4 4,8 15,3 7,3 3,8 0,3 127

II 1,21 43,3 56,8 96,7 8,3 2,9 0,1 254

*. I - техногенный элювий, II - лессовидный суглинок.

Анализ основных физических свойств субстратов показал, что меньшей плотностью сложения и большей порозностью обладает лессовидный суглинок (табл. 1). В нем же содержится значительно больше частиц размером менее 1 и 0,01 мм.

Следовательно, лессовидный суглинок имеет более благоприятные физические свойства для роста и развития растений по сравнению с техногенным элювием. По значению рН водной суспензии техногенный элювий имеет нейтральную реакцию среды, лессовидный суглинок - слабощелочную.

По основным агрохимическим свойствам исследуемых субстратов обеспеченность их азотом (по содержанию N-N0^ очень низкая; фосфором (по содержанию легкоподвижного Р2О5) - низкая;

калием (по содержанию обменного К2О) - средняя в техногенном элювии и высокая в лессовидном суглинке (см. табл. 1).

Среди сельскохозяйственных культур были выбраны пшеница яровая (Новосибирская 89) и травосмесь, включающая кострец безостый ^т-mus inermis Leyss.) и клевер розовый (Trifolium pratense L.).

Применяемые в опыте гуматы калия и натрия, получены из бурого угля Кайчакского месторождения Канско-Ачинского бассейна и его естественно-окисленной формы - сажистого угля, являющегося отходом угледобычи.

В первом варианте опыта семена растений замачивали в растворах гуматов натрия и калия на сутки, а затем высевали. Во втором варианте опыта ГП вносили непосредственно в субстраты с по-

Рис.1. Всхожесть семян пшеницы на экспериментальных площадках при их замачивании в растворах

гуматов, %

Рис.2. Всхожесть семян пшеницы на экспериментальных площадках при внесении гуматов с поливом, %

ливом после высева семян. Концентрация растворов ГП при поливе и замачивании семян сельскохозяйственных культур составила 0,02 %.

Результаты исследований показали, что всхожесть семян пшеницы после их замачивания в растворах гуматов на площадках с лессовидным суглинком по сравнению с вариантом без ГП (контроль) увеличилась в среднем на 13,0 %, на площадках с техногенным элювием - на 13,4 % (рис. 1).

При внесении ГП с поливом всхожесть семян пшеницы на лессовидном суглинке и техногенном элювии превысила контрольные варианты на 12,4 и 14,2 % соответственно (рис. 2).

Следовательно, предпосевная обработка семян пшеницы растворами гуматов натрия и калия способствует увеличению их всхожести в результате более интенсивного поглощения воды и набухания зерновок при проращивании .

Всхожесть семян многолетних трав после их обработки ГП на исследуемых субстратах увеличилась незначительно.

При внесении гуматов с поливом всхожесть семян трав на лессовидном суглинке и техногенном элювии превысила контрольные варианты на 4,8 и 3,7 % соответственно. Сравнительно низкий эффект использования ГП при возделывании мно-

Итак, ГП применяют как в целях стимуляции роста и развития растений, так и как вещества, обладающие биопротекторными свойствами. Они улучшают усвоение растениями питательных элементов, повышают устойчивость растений к климатическим и биотическим стрессорам .

Исследования по влиянию ГП на урожайность пшеницы показали, что наибольший эффект достигается при использовании сажистых гуматов натрия и калия как на лессовидном суглинке, так и на техногенном элювии. Сажистые формы ГП в среднем на 13-17 % эффективнее рядовых аналогов. Это, на наш взгляд, обусловлено повышенным содержанием кислорода, азота и серы в структурной формуле исходных бурых углей (табл. 3) .

Таким образом, использование гуматов натрия и калия активизируют рост и развитие сельскохозяйственных культур, повышают адаптогенную способность растений к условиям среды и улучшают экологическую обстановку техногенных ландшафтов, особенно при выращивании на них многолетних трав.

Большее влияние на всхожесть семян и урожайность пшеницы яровой оказывают предпосевная обработка по сравнению с поливом и сажистые формы ГП по сравнению с рядовыми. В то

Таблица 2. Превышение надземной фитомассы многолетних трав по сравнению с контролем (2-ой год),

Субстрат Полив Замачивание семян

^^яд. Кряд. ^^аж. Ксаж. ^&ряд Кряд. ^^аж. Ксаж.

I 11,3 51,9 -14,9 б1,8 20,0 52,0 -10,4 17,4

II 159,3 98,1 147,1 75,8 74,1 143,5 72,2 93,8

*. I - лессовидный суглинок, II - техногенный элювий.

Таблица 3. Характеристика исходных углей и гуминовых кислот, daf *, % масс

Образец С Н О+N+S по разности

I б4,3 4,7 31,0

II 55,1 2,7 42,2

*. I - бурый уголь, II - окисленный бурый уголь (сажистый). *daf - dry ash free - сухое беззольное состояние образца топлива.

голетних трав обусловлен тем, что их семена имеют меньший запас питательных веществ по сравнению с пшеницей .

Однократное применение ГП при посеве многолетних трав в первый год исследований способствовало повышению их всхожести; во второй год - увеличению их продуктивности. В целом прибавка надземной фитомассы трав в вариантах с ГП по сравнению с контролем составила 24 % на лессовидном суглинке и 108 % на техногенном элювии (табл. 2).

время как всхожесть семян и продуктивность многолетних трав была выше при поливе и использовании рядовых форм ГП.

Эффективность ГП на техногенном элювии выше, чем на лессовидном суглинке, несмотря на то, что лессовидный суглинок обладает более благоприятными физическими свойствами. Результаты исследований необходимо учитывать при разработке концепции по воспроизводству плодородия почв техногенных ландшафтов на агроэколо-гической основе

СПИСОК ЛИТЕРАТУРЫ

1. Агрохимические методы исследования почв. - М.: Наука, 1975. - б5б с.

2. Андроханов, В.А. Почвенно-экологическое состояние техногенных ландшафтов: динамика и оценка / В.А. Андроханов, В.М Курачев. - Новосибирск: Изд-во СО РАН, 2010. - 224 с.

3. Безуглова, О.С. Удобрения и стимуляторы роста. - Ростов-на-Дону: Феникс, 2000. - 320 с.

4. Безуглова, О.С. Применение гуминовых препаратов под картофель и озимую пшеницу / О.С. Безуглова, Е.А. Полиенко // Проблемы агрохимии и экологии. - 2011. - № 4. - С. 29-32.

5. Вадюнина, А.Ф. Методы исследования физических свойств почв и грунтов / А.Ф. Вадюнина, З.А. Корчагина. - М.: Высш. шк., 1973. - 399 с.

6. Воронина, Л.П. Оценка биологической активности промышленных гуминовых препаратов / Л.П. Воронина, О.С. Якименко, В.А. Терехова // Агрохимия. - 2012. - № 6. - С. 45-52.

7. Доспехов, Б.А. Методика полевого опыта. - М.: Агропромиздат, 1985. - 351 с.

8. Корсаков, К.В. Повышение окупаемости минеральных удобрений при использовании препаратов на основе гуминовых кислот / К.В. Корсаков, В.В. Пронько // Плодородие. - 2013. - № 2. - С. 18-20.

9. Овчаренко, М.М. Гуматы - активаторы продуктивности сельскохозяйственных культур //Агрохимический вестник. - 2001. - № 2. - С. 13-14.

10. Орлов, Д.С. Свойства и функции гуминовых веществ // Гуминовые вещества в биосфере. - М.: Наука, 1993. - С. 16-27.

11. Смирнова, Ю.В. Механизм действия и функции гуминовых препаратов / Ю.В. Смирнова, В.С. Виноградова // Агрохимический вестник. - 2004. - № 1. - С. 22-23.

12. Соколов, Д.А. Оценка эффективности применения гуматов Na и K в качестве стимуляторов роста сельскохозяйственных культур в условиях техногенных ландшафтов / Д. А. Соколов, С. Л. Быкова, Т.В. Нечаева, С.И. Жеребцов, З.Р. Исмагилов // Вестник НГАУ. - 2012. - № 3 (24). - С. 25-30.

13. Применение гумата натрия в качестве стимулятора роста / Л.А. Христева [и др.] // Гуминовые удобрения: теория и практика их применения. Т.1У. - Днепропетровск, 1973. - С. 308-309.

14. Шеуджен, А.Х. Удобрения, почвенные грунты и регуляторы роста растений / А.Х. Шеуджен, Л.М. Онищенко, В.В. Прокопенко. - Майкоп: Адыгея, 2005. - 120 с.

15. Якименко, О.С. Гуминовые препараты и оценка их биологической активности для целей сертификации / О.С. Якименко, В.А.Терехова // Почвоведение. - 2011. - № 11. - С. 1334-1343.

16. Clapp, C.E. Plant growth promoting activity of humic substances / C.E. Clapp, Y. Chen, M.H.B. Hayes, H.H. Chen // Understanding and Managing Organic in Soils, Sediments and Waters / Eds.: R.S. Swift and K.M. Sparks. - Madison: International Humic Science Society, 2001. - Р. 243-255.

17. Malcolm, R.L. Effects of humic acid fractions on invertase activities in plant tissues / R.L. Malcolm, D. Vaughan // Soil Biology & Biochemistry. - 1978. - V. 11. - Р. 65-72.

18. Yakimenko, O. Chemical and plant growth stimulatory properties in a variety of commercial humates // Humic substances - linking structure to functions / Eds.: F.H. Frimmel, G. Abbt-Braun. Proc. Of 13th Meeting of the Int. Humic Substances Society. - Karlsruhe, 2006. - V. 45-II. - P. 1017-1021.

Быкова Светлана Леонидовна, младший научный сотрудник лаборатории рекультивации почв Института почвоведения и агрохимии СО

Е-mail: [email protected]

Жеребцов Сергей Игоревич, канд. хим. наук, зав. лабораторией химии бурых углей Института углехимии и химического материаловедения ИУХМ СО РАН. Е-шай: [email protected]

Соколов Денис Александрович, канд. биол. наук, председатель Совета научной молодежи почв Института почвоведения и агрохимии СО РАН, научный сотрудник лаб. рекультивации почв ИПА СО РАН. E-mail: [email protected]

Исмагилов Зинфер Ришатович, член-корреспондент РАН, докт.хим. наук, директор Института углехимии и химического материаловедения СО РАН. E-mail: [email protected]

Нечаева Таисия Владимировна, канд. биол. наук, зам. председателя Совета научной молодежи Института почвоведения и агрохимии СО РАН, научный сотрудник лаборатории агрохимии почв СО РАН. E-mail: [email protected]

На правах рукописи

ЭФФЕКТИВНОСТЬ ПРИМЕНЕНИЯ ОКИСЛЕННЫХ УГЛЕЙ В КАЧЕСТВЕ УДОБРЕНИЯ СЕЛЬСКОХОЗЯЙСТВЕННЫХ КУЛЬТУР В ЛЕСОСТЕПНОЙ ЗОНЕ КЕМЕРОВСКОЙ ОБЛАСТИ

Специальность 06.01.04 - агрохимия

Барнаул - 2007

Работа выполнена в ФГОУ ВПО «Алтайский государственный аграрный университет» на кафедре почвоведения и агрохимии и ФГУ Центр агрохимической службы «Кемеровский».

Научный руководитель: заслуженный деятель науки РФ,

доктор сельскохозяйственных наук, профессор Бурлакова Лидия Макаровна

Официальные оппоненты: доктор сельскохозяйственных наук,

профессор Антонова Ольга Ивановна

Ведущая организация: ФГОУ ВПО «Кемеровский государственный

сельскохозяйственный институт»

Защита диссертации состоится «1» марта 2007 г. в 9 час. 00 мин. на заседании диссертационного совета Д.220.002.01 в Алтайском государственном аграрном университете по адресу: 656049, г. Барнаул, пр. Красноармейский, 98

С диссертацией можно ознакомиться в библиотеке ФГОУ ВПО «Алтайский государственный аграрный университет»

Ученый секретарь диссертационного совета доктор биологических наук,

кандидат сельскохозяйственных наук Шогг Петр Рейнгольдович

профессор

В.А. Рассыпное

Актуальность темы. В сельском хозяйстве Кемеровской области в результате интенсивного использования земель снижаются запасы гумуса. За последние два десятилетия наблюдается отрицательный баланс гумуса и питательных веществ в пахотных почвах. Ежегодная потребность в органических удобрениях составляет около 3 млн тонн. Удовлетворить ее за счет традиционных форм органики в настоящее время невозможно.

Источниками получения дополнительного органического вещества в качестве удобрений для сельского хозяйства области являются: окисленные в пластах бурые угли Канско-Ачинского угольного бассейна, окисленные в пластах каменные угли Кузбасса; углесодержащие отходы флотационного обогащения угля. Окисленные угли имеют широкий набор макро- и микроэлементов, являются кЛадовой органического вещества, содержащего большое количество гуминовых кислот, которые по своему составу близки к почвенным.

Окисленные в пластах бурые и каменные угли практически не используются в народном хозяйстве в качестве топлива или сырья для других отраслей и при добыче угля открытым способом поступают в отвалы вместе со вскрышными породами. На разрезах Кузбасса объёмы окисленных углей, поступающих в отвалы, составляют десятки миллионов тонн ежегодно. При обогащении угля образуется большое количество углесодержащих отходов. Ежегодный выход отходов флотационного (мокрого) обогащения угля в Кузбассе составляет миллионы тонн. Они складируются в хвостохранилища, где окисляются в условиях атмосферы, и в настоящее время практически не используются.

Размещение окисленных углей и углеотходов является серьезной проблемой для Кузбасса. Окисленные угли, складируемые в отвалах, горят, вызывая загрязнение атмосферы, под углеотходы занимаются сотни гектаров плодородных земель. Окисленные угли содержат до 70 % органического вещества, в т. ч. отходы флотации 20-60 %, содержание СаО и К^О в них достигает 30-40 % от минеральной части. Они являются хорошим сорбентом, имеют щелочную реакцию (рН-7,3-7,6). Благодаря этим свойствам окисленные угли возможно использовать как удобрения.

Поэтому исследования по использованию окисленных углей в качестве удобрений, сельскохозяйственных культур в Кемеровской области отличаются особой актуальностью.

Научная новизна. Впервые на основании комплексных исследований обосновано применение окисленных углей в качестве удобрения сельскохозяйственных культур в условиях лесостепной зоны Кемеровской области. Установлены оптимальные дозы внесения окисленных углей для получения урожая с соответствием его качества нормативам по безопасности продукции. Определено влияние окисленных углей на потребление элементов питания и тяжелых металлов яровой пшеницей

Апробация. Основные положения работы докладывались и обсуждались на областных и районных агрономических совещаниях с 1985 по 2006 г.: на всесоюзной научно-практической конференции «Социально-экономические проблемы достижения коренного перелома в эффективности развития производительных сил Кузбасса» (Кемерово, 1989), всесоюзной научно-технической конференции <<:Экологические проблемы угольной промышленности Кузбасса» (Междуреченск, 1989), межрегиональной научно-практической конференции «Агрохимия: наука и производство»

(Кемерово, 2004), научно-практических конференциях «Тенденции и факторы развития агропромышленного комплекса Сибири» (Кемерово, 2005; 2006), совещаниях специалистов агрохимической службы России.

Защищаемые положения:

1. Применение окисленных углей в качестве удобрения улучшает обеспеченность почвы подвижными элементами питания.

2. Удобрение зерновых культур и картофеля окисленными углями повышает урожайность и качество продукции.

3. Применение окисленных углей в лесостепной зоне Кемеровской области энергетически и экономически выгодно.

1. Использование окисленных углей в качестве удобрения сельскохозяйственных культур

Первая глава посвящена обзору отечественной и зарубежной литературы по изучаемой проблеме. Приводятся данные по запасам окисленного бурого угля, в том числе и в Кемеровской области. Делается вывод, что в литературе имеются различные мнения исследователей о характере действия углистых пород на почвенные процессы и высшие растения как стимуляторов роста, источников питательных веществ и мелиорантов почв. Отмечается, что в Кемеровской области отсутствуют комплексные исследования по применению окисленных углей в качестве удобрений под сельскохозяйственные культуры.

2. Условия, объекты и методы исследований

Объектами исследования послужили окисленные бурые угли и отходы обогащения угля (углеотходы) в качестве удобрения

зерновых культур и картофеля в лесостепной зоне Кемеровской области. Материалом для исследования послужили данные полевых опытов (1983-1984 и 2002-2004 гг.), проводимые лично автором. Методология работ систематически рассматривалась на заседаниях научно-технического совета центра агрохимической службы. Испытания изучаемых углистых пород как удобрений были проведены с зерновыми (яровые: ячмень, пшеница и овес) и картофелем. Опыты проведены в совхозе «Андреевский» Кемеровского района в 1983-1984 гг., в агрофирме «Тисуль» Тисульского района и в АОЗТ «Береговой» Кемеровского района в 2002-2004 гг. Полевые опыты проводились по различным схемам. Агротехника возделывания изучаемых культур общепринятая в Кемеровской области. В расчлененной лесостепи Кемеровской области (совхоз «Андреевский») углеоотходы применялись на серых лесных тяжелосуглинистых слабосмытых почвах. Изучалась эффективность разных доз углеотходов как в чистом виде, так и на фоне минерального удобрения - №К по 60 кг д. в./га. Углеотходы и минеральные удобрения, кроме азотных, вносили вразброс под зяблевую вспашку.

В «островной» лесостепи (агрофирма «Тисуль») на черноземах выщелоченных среднемощных среднегумусных тяжелосуглинистых изучалась эффективность разных доз предпосевного внесения окисленного бурого угля и на фоне азотного минерального удобрения. В лесостепи Кузнецкой котловины на полях АОЗТ «Береговой» на черноземах выщелоченных среднемощных среднегумусных тяжелосуглинистых окисленный бурый уголь вносили весной одновременно с обработкой почвы.

В почвах анализировались содержание подвижного фосфора, обменного калия, гумуса, сумма поглощенных оснований, тяжелых металлов, определялась кислотность. В растительной продукции определялось содержание азота, фосфора, калия, клейковины, крахмала, тяжелых металлов. Исследования проведены в соответствии ГОСТами и ОСТами и методиками ЦИНАО, принятыми в агрохимической службе.

Диссертационная работа явилась результатом обобщения многолетних исследований и наблюдений влияния окисленных углей в качестве удобрения на урожайность и качество сельскохозяйственных культур, изменения агрохимических свойств выщелоченных черноземов. Достоверность и надежность материалов

исследований оценена статистическими методами. Анализ и обобщение агрохимических исследований выполнен с использованием программного обеспечения банка данных, пакета обработки электронных таблиц Excel.

3. Влияние окисленных углей на обеспеченность сельскохозяйственных культур элементами питания, урожайность и качество продукции

Агрохимические свойства окисленных углей и содержание тяжелых металлов

Окисленные угли разреза «Талдинский-Северный»: имеют 68,288,7 % органического вещества. Они содержат 52,0-95,7 % гуминовых кислот, 1,57-1,84 валового азота, 0,04-0,19 % фосфора и 0,06-0,13 % калия. Содержание Р205 - 4,2-21,0 мг/кг и К20 - 10-40 мг/кг. Угли не засолены, плотный (солевой) остаток не превышает 0,047 %, рН-6,2-7,0. Угли обладают высокой емкостью поглощения, 93,7-114,0 мг-экв/100 г, степень насыщенности основаниями свыше 80 %. Данные угли имеют повышенное содержание подвижных форм меди, свинца, никеля и хрома в некоторых пластах, но это не является препятствием для применения их в качестве удобрений, так как при внесении происходит многократное разбавление, что нужно учитывать при определении доз внесения угля. По своим агрохимическим свойствам угли являются пригодными для производства гуминовых удобрений, а также могут улучшать физико-химические свойства бедных субстратов, так как содержат большое количество высокогумусированного органического вещества, общего азота и обладают высокой емкостью поглощения.

Окисленные бурые угли Тисульского месторождения имеют 62,6-65,9 % органического вещества, содержат 0,83-0,88 % общего фосфора и калия. Количество гуминовых кислот в них составляет 32,1-34,2 % от органического вещества. Емкость поглощения бурых углей составляет 200 мг-экв/100 г, количество кальция и магния в сумме достигает 88,4 мг-экв/100 г. Содержание Р205 низкое, а калия -высокое," поэтому угли не могут являться источником калийного питания растений. В углях Тисульского месторождения содержится большое количество марганца и хрома. Уровень содержания металлов не превышает ОДК, принятые для почв. Угли могут также являться источником микроэлементов для растений. Высокое

Влияние окисленных углей на свойства почв

Ежегодно внесение углей под пшеницу проводилось на новом участке агрофирмы «Тисуль». К уборке урожая содержание гумуса на контроле в 2002-2003 гг. составляло 9,7 и 9,5 %, в 2004 г. - 9,3 %, гидролитическая кислотность - 3,16; 3,14; 3,80 мг-экв/100 г, кислотность почвы по годам исследования рН - 5,4-5,3. Содержание Р205 - 28, 25 и 23 мг/кг, К20 - 110, 106 и 95 мг/кг. Сумма поглощенных оснований и емкость поглощения высокая. Внесение угля оказало влияние на агрохимические свойства почвы. По сравнению с контролем Нг на всех вариантах 2002-2004 гг. уменьшилось. Увеличилось содержание Р205 на 11-36 % и К20 на 13-32 % относительно контроля, а в 2004 г. на вариантах с внесением угля - на 13-82 %. Наблюдается тенденция к увеличению емкости поглощения. Содержание гумуса, Са, и рНс практически не изменилось.

В опытах с пшеницей в АОЗТ «Береговой» бурый окисленный уголь Тисульского месторождения вносился ежегодно на новых участках. Ко времени уборки содержание гумуса на контрольных вариантах составляло 7,6-9,3 %. Содержание Р205 - 219 и 104 мг/кг, К20 - 126 и 118 мг/кг, рНс - слабокислая, Нг - 4,2 и 5,14 мг-экв/100 г. Емкость поглощения и сумма поглощённых оснований - высокие. Содержание Са2+ - 21,1 и 18,0 и М§2+ - 2,3 и 4,3 мг-экв/100 г почвы. В вариантах опыта 2002 г. внесение угля увеличило содержание в почве Р205 на 6-9 % и К20 на 6-15 %, снизилась Нг. В вариантах опыта 2003 г. внесение углей снизило Нг, рНс на 0,1-0,2 ед. Остальные показатели практически не изменились. Внесение окисленных углей под картофель на полях АОЗТ «Береговой» ко времени уборки урожая снизило Нг на 5-12 % и рНс, увеличило содержание К20 в почвах на 3-17 % по сравнению с контролем. В опыте 2003 г. наблюдалось увеличение содержания гумуса. Изменение остальных показателей незначительно.

Таким образом, внесение окисленных бурых углей на черноземных почвах положительно влияет на агрохимические свойства: уменьшает кислотность почв и увеличивает содержание в почвах Р205 и КгО. Эти изменения и их величина также зависят от погодных условий года. По изменению содержания гумуса от

внесения окисленных углей вопрос требует дополнительных исследований. Также в публикациях по этому вопросу имеются различные мнения.

Влияние окисленных углей на содержание в почве тяжёлых

металлов

В опытах на черноземных почвах использовались окисленные бурые угли Тисульского месторождения с повышенным содержанием валовых Мп, Сг. Содержание подвижного Сг в них превышало в 2,57 раза ПДК для почв. Содержание остальных металлов в углях было ниже ПДК. При внесении в почву углей происходит многократное разбавление концентрации металлов, содержащихся в них. Так, при дозе 1,2 т/га содержание валового Мп в пахотном слое по расчету может повыситься всего на 4,6 мг/кг, валового Сг - на 0,53 мг/кг, а подвижного Сг - на 0,006 мг/кг. Использование под пшеницу углей в дозах 0,2-1,2 т/га к уборке урожая относительно контроля уменьшило содержание в почве подвижных форм: Сс) - на 18-66 %, РЬ - на 4-41, Ъп - на 4-26 и Сг - на 20-51 %. Валовое содержание тяжелых металлов в почве по вариантам опыта практически не изменилось. Во всех вариантах опыта содержание тяжелых металлов в почве не превышало установленных ПДК. Таким образом, использование окисленных углей в качестве удобрений снижает содержание подвижных форм тяжелых металлов в почвах, способствуя переводу их в малорастворимые соединения.

Влияние удобрений из углеотходов Кузнецкого бассейна на урожайность, качество сельскохозяйственной продукции

В условиях Кемеровской области испытания углеотходов обогатительной фабрики ГОФ «Судженская» в качестве удобрений проводились в 1983-1984 гг. на зерновых культурах в полевых условиях. Углеотходы имеют щелочную реакцию. Содержание органического вещества - 66,4, гуминовых кислот - 24,3 % от количества органики, общего азота - 0,88 %, фосфора и калия - такое же, как в зональных почвах. Содержание подвижного азота незначительное, а количество Р2О5 и К20 соответствует низкому содержанию их в почвах.

Влияние углеотходов на урожай и качество зерна ячменя и

Агрохимическая характеристика почвы в совхозе «Андреевский» на участке с ячменем: рНс - кислая, содержание К20 - низкое, Р205 -

высокое, азота и гумуса - среднее; на участке с овсом: рНс - кислая, содержание азота, гумуса и К20 - среднее, Р2О5 - высокое. Изучали влияние углеотходов в дозах 1-3 т/га на урожайность и качество зерна ячменя и овса. Существенная прибавка урожая ячменя 2,8 ц/га или 11,8 % от углеотходов получена при дозе 3 т/га (табл. 1).

Таблица 1

Влияние углеотходов на урожайность ячменя и овса_

Варианты опыта Ячмень Osee

Средняя урожайность, ц/га Прибавка Средняя урожайность, ц/га Прибавка

ц/га % u/ra %

1 Без удобрений (контроль) 15,8 - - 28,0 - -

2 Углеотходы 1 т/га 15,3 -0,5 -3.1 28,4 +0,4 + 1,4

3 Углеотходы 2 т/га 16,9 + 1,1 +7,0 27,0 -1,0 -3,6

4 Углеотходы 3 т/га 18,6 +2,8 + 17,7 31,5 +3,5 +12,5

5 ^РбоКм-Фон 19,7 +3,9 +24,7 29,0 +1.0 +3,6

6 Фон + углеотходы 1 т/га 21,8 +6,0 +38,0 28,6 +0,6 +2,1

7 Фон + углеотходы 2 т/га 23,4 +7,6 +48,1 31,5 +3,5 +12,5

8 Фон + углеотходы 3 т/га 23,0 +7,2 46,2 35,4 +7,4 +26,4

НСР05 2,58 3.1

При внесении углеотходов в дозе 1 и 2 т/га достоверного изменения урожайности не отмечено. Внесение углеотходов по фону минеральных удобрений существенно повысило урожайность зерна ячменя. В вариантах по 1, 2 и 3 т/га углеотходов по фону минеральных удобрений прибавки урожая составили: 6,0, 7,6, 7,2 ц/га, в т. ч. прибавки от углеотходов соответственно 2,1, 3,7 и 3,3 ц/га. Таким образом, углеотходы в дозах 2-3 т/га по фону минеральных удобрений на серых лесных почвах повышают урожай ячменя на 7,27,6 ц/га к контролю, в том числе за счет углеотходов - на 3,7-3,3 ц/га или, на 23,4-21,5 %.

Повышение урожайности ячменя от углеотходов и минеральных удобрений происходит в основном за счёт увеличения веса 1000 зёрен. Углистые породы не ухудшают качества зерна ячменя, а при совместном внесении в дозах 1-2 т с минеральными удобрениями увеличивают содержание азота в зерне на 7,7-23 % по сравнению с контролем.

Внесение углеотходов в дозах 1 и 2 т/га не оказало влияния на урожайность зерна овса (табл. 1). От внесения 3 т/га углеотходов без минеральных удобрений и 2 т/га по фону (ЫРК)60 достоверные прибавки урожайности составили 3,5 ц/га, или 12,5 %. Существенная прибавка урожая зерна овса получена при внесении 3 т/га углеотходов по фону (КРК)60 - 7,4 ц/га, в т. ч. от углеотходов - 6,4 ц/га, или 22,8 %.

Углеотходы при внесении 3 т/га на серых лесных почвах повышают урожай зерна овса на 12,5 %, а по фону минеральных

удобрений - на 22,9 %. Углеотходы оказали влияние на структуру урожая овса. Прибавка урожая в варианте (фон + углеотходы 3 т/га) получена за счет крупности зерна и количества продуктивных стеблей. Для анализа качества зерна овса определяли содержание азота, фосфора, калия и белка. Углеотходы так же, как и минеральные удобрения, увеличивают содержание белка в зерне овса в среднем на 1,05 - 1,33 % в расчете на абсолютно сухое вещество.

Влияние окисленных углей на урожайность, качество зерна яровой пшеницы и потребление питательных элементов в «островной» лесостепи

В агрофирме «Тисуль» в почве опытного участка содержание гумуса, К20 и Са2+ высокое, Р205 и Ы/Ы03 - низкое, М§2+ - среднее, рНс - слабокислая. Культура - яровая пшеница «Тулунская-12» среднеспелая, со средней устойчивостью к засухе и высокой к полеганию, не осыпается. Увеличение урожайности зерна пшеницы от внесения угля в качестве удобрений наблюдается во все годы проведения опыта, но не на всех вариантах (табл. 2).

Таблица 2

Продуктивность яровой пшеницы «Тулунская-12»

Вариант опыта Урожайность, ц/га Прибавка, ц/га

2002 г 2003 г 2004 г Среднее 2002 г 2003 г 2004 г Среднее

1 Контроль 12,0 10,5 28,1 16,9 - . . .

2 Б V 0,2 13,8 10,9 29,2 18,0 1,8 0,4 1,1 1.1

) Б у 0,4 14,9 11.0 29,7 18,5 2,9 0,5 0,6 1,6

4 Б у 0,6 15,5 12,7 28,6 18,9 3,5 2,2 0,5 2,0

5 Б у 0,8 18,0 13,8 30,9 20,9 6,0 3,3 2,8 4,0

5 Б у 1,0 20,6 12,8 29,8 21,0 8,6 2,3 1.7 4,1

7 Б у 1,2 19,2 11,5 28,8 19,8 7,2 1,0 0,7 2.9

Ы6о(фон) 12,2 10,1 26,3 16,2 0,2 - . -

9 Фон + Б у 0,2 16,0 11,3 26,5 17,9 3,8 1,2 0,2 1,7

10 Фон + Б у 0,4 16,4 11,3 28,7 18,8 4,2 1.2 2,4 2.6

11 Фон + Б у 0,6 17,2 13,6 31,4 20,7 5,2 3,5 5,1 4,5

12 Фон + Б у 0,8 18,8 13,6 30,9 21,1 6,6 3,5 4,6 4,9

13 Фон + Б у 1,0 20,3 13,8 29,2 21,1 8,1 3,7 2,9 4,9

14 Фон + Б у 1,2 22,2 13,8 28,6 21,5 10,0 3,3 2,3 5,3

НСР0! 4,1 2,0 2,7

Ежегодные наиболее высокие прибавки урожая получены при внесении 800 кг/га бурого угля. При внесении по фону азотных удобрений ежегодные достоверные прибавки урожая получены на дозах от 600 до 1000 кг угля. Низкая урожайность зерна была в 2003 г. по сравнению с другими годами ввиду недостаточной влаго-обеспеченности в вегетационный период, ГТК = 0,86. Прибавки урожая от внесения азота не получены, а от совместного внесения окисленных углей и азота выше, чем от углей. В среднем за три года прибавка урожая пшеницы при внесении окисленных углей

составила: при дозе 0,8 т/га - 23,7 %, при дозах 0,8 и 1,0 т/га по фону азота-29,0% (рис. 1).

контроль Б.у 200 Б.у 400 Б.у 600 Б у 800 Б у 1000 Б у 1200

Рис. 1. Урожайность пшеницы по вариантам опыта (средняя)

Наиболее оптимальным под пшеницу является внесение 0,8 т/га углей. Во всех вариантах опыта в течение трёх лет получено зерно удовлетворительного качества (II группа). Содержание клейковины в зерне высокое во всех вариантах - 29-39 % в зависимости от года и практически не отличается от контроля.

Содержание общего азота в зерне по сравнению с контролем увеличивается по всем вариантам. По содержанию фосфора в зерне определённой закономерности не выявлено. Содержание калия в зерне изменялось по годам проведения опыта. При высокой влагообеспеченности внесение окисленных углей повышает содержание калия в зерне по сравнению с контролем на 13-33 %. Содержание сахара в зерне различалось по годам исследований. Четкой закономерности изменений по вариантам не наблюдается.

Внесение окисленных углей в качестве удобрений под пшеницу не оказывает отрицательного влияния на качество зерна. Наблюдается тенденция в увеличении содержания NPK в зерне при дозах 0,8-1,0 т/га. Анализ зерна на содержание тяжелых металлов не выявил превышения допустимых уровней. Оптимальной дозой использования бурых окисленных углей в качестве удобрений под пшеницу является 0,8 т/га, при этом прибавка урожая зерна составляет 4 ц/га, или 23,7 % в среднем за три года.

Влияние окисленных углей на урожайность, качество зерна яровой пшеницы в лесостепи Кузнецкой котловины

Культура - яровая пшеница, сорт «Ирень», среднеспелый, со средней устойчивостью к засухе и высокой к полеганию, не осыпается. Вносились в качестве удобрений бурые окисленные угли Тисульского месторождения в дозах 0,2-1,2 т/га. Относительно контроля достоверные прибавки урожая получены по всем вариантам в 2002 г. и по вариантам 0,4-1,2 т/га в 2003 г. (табл. 3).

Таблица 3

Влияние бурого угля на продуктивность яровой пшеницы сорта «Ирень»

Вариант (БУ в т/га) Урожайность, ц/га Прибавка, ц/га Прибавка, %

2002 г 2003 г среднее 2002 г 2003 г среднее

1 Контроль 22,4 24,4 23,4 - - . .

2 Б у 0,2 28,1 25,5 26,8 5,7 1,1 3,4 14,5

3 Б у 0,4 28,3 27,5 27,9 5,9 3,1 4,5 19,2

4 Б у 0,6 30,9 28,3 29,6 8,5 3,9 6,2 26,5

5 Б у 0,8 35,4 29,7 32,6 13,0 5,3 9,2 39,3

6 Б у 1,0 35,5 33,9 34,7 13,1 9,5 11,3 48,3

7 Б у 1,2 31,7 32,1 31,9 9,3 7,7 8,5 36,3

НСРм 4,40 2,22

При внесении бурого угля в дозе 1,2 т/га средняя за 2 года прибавка урожая на 3,8 ц/га меньше, чем в варианте - б. у. 1,0 т/га. С увеличением дозы более 1,0 т/га эффективность падает, что связано, вероятно, с увеличением концентрации гуматов в почвенном растворе (рис. 2).

□ урожайность

контроль Бу.200 Б.у 400 Б.уБОО Б у 800 Б у 1000 Бу.1200

Рис. 2. Урожайность пшеницы по вариантам (в среднем за два года)

При меньшей влагообеспеченности вегетационного периода (2003 г.) прибавки урожая уменьшаются. В среднем за два года прибавки урожая пшеницы от окисленных углей по вариантам 0,21,2 т/га составили от 14,5 до 48,3 %.

Использование окисленных бурых углей не влияет отрицательно на химический состав и качество зерна. Содержание азота на 8 - 22% и калия на 7 - 25 % в зерне пшеницы на всех вариантах с внесением угля выше, чем на контроле. Содержание фосфора меньше по сравнению с контролем, но находится на уровне нормы. Содержание тяжелых металлов в зерне пшеницы не превысило допустимый

уровень по СанПиН 2.3.2.560-96, за исключением кадмия во всех вариантах урожая 2003 г. (контроль - 0,2 мг/кг). Отмечено снижение в зерне концентрации свинца на 18-30 %, кадмия на 28-80 %, меди на 5-20 %, цинка на 2-11 % относительно контроля.

Влияние окисленных углей на урожайность и качество клубней картофеля в лесостепи Кузнецкой котловины Содержание в почве опытного участка Р205 - 226 и 125 мг/кг, К20 - 122 и 153 мг/кг, обменного кальция 21,3 и обменного магния 2,3 и 3,5 мг-экв/100 г, рНс - слабокислая. Культура - картофель, сорт «Невский». Предшественник в 2002 г. - пшеница, в 2003 г. - капуста. Урожайность картофеля по вариантам представлена в таблице 4.

Таблица 4

Урожайность картофеля «Невский» по вариантам опыта

Вариант опыта (БУ в т/га) С редкий урожай, ц/га Прибавка к контролю, ц/га Прибавка, %

2002 г 2003 г Среднее 2002 г 2003 г Среднее

1 Контроль 300 260 280 - . .

2 Б V 0,2 320 263 292 20 3 12 4,3

3 Б V 0,4 328 268 298 28 8 18 6,4

4 Б V 0,6 333 270 302 33 10 22 7,9

5 Б у 0,8 335 280 308 35 20 28 10,0

6 Б у 1,0 341 273 307 41 13 27 9,6

НСР„, 26,5 7,2

Достоверные прибавки урожая картофеля относительно контроля получены во всех вариантах б. у. кроме 0,2. В 2003 г. прибавки урожая от окисленных углей меньше, чем в 2002 г. Это связано с меньшей влагообеспеченностью вегетационного периода, за который выпало на 129,4 мм меньше осадков, чем в предыдущем. Средняя прибавка урожая клубней картофеля за два года на вариантах 0,8 и 1,0 т/га составила 28 и 27 ц/га, или 10 и 9,6 % соответственно (рис. 3).

310 I -- -■ "■ "■ " " 1-1 I "I ■ - - ..... I ■..._"

»5- ------" ,11-1" " -

300 ..."■. 4 1 1, ... - - " 1 ,„ -

ж | { | - | " - > % у] | ■ "" Ц-.

Рис. 3. Урожайность картофеля по вариантам (среднее)

Окисленные угли увеличили содержание азота на 8,8-20 % и калия - на 5-25 % в клубнях картофеля по сравнению с контрольным вариантом. Внесение 0,8-1,0 т/га угля под картофель повышает урожай на 10 и 9,6 % соответственно, увеличивает содержание калия и азота в клубнях. Наиболее оптимальная доза внесения - 0,8 т/га.

Баланс питательных веществ

Расчет баланса был проведен по вариантам опытов с яровой пшеницей и картофелем в агрофирме «Тисуль» и АОЗТ «Береговой»

По закону возврата в почву питательных веществ необходимо возмещать питательные элементы, вынесенные урожаем, потери в результате вымывания, эрозии и другим причинам, за счет внесения удобрений или иных агротехнических приемов. Изучение баланса питательных веществ необходимо для определения влияния доз внесения удобрений на плодородие почв и продуктивность сельскохозяйственных культур.

В - приходной части баланса учитывалось поступление питательных веществ с пожнивными остатками, с бурыми углями (Р -2,5 и К - 7,0 кг на 1 т), семенами (Ы - 6,3-9,5 кг/га; Р - 1,3-2,0; К -1,6-2,4 кг/га), с несимбиотической азотфиксацией свободноживущими микроорганизмами (8 кг/га К), с атмосферными осадками (4,3 кг/га N и К). Важным источником пополнения запасов питательных веществ являются пожнивные остатки, количество которых увеличивается с ростом урожая при внесении окисленных углей.

В расходной части баланса учитывался вынос питательных элементов с урожаем сельскохозяйственных культур. Баланс элементов питания (Ы, Р, К) под яровой пшеницей положительный -63,3-98,1 кг/га, но более положительный баланс на вариантах с внесением бурого угля. Интенсивность баланса в опытах с яровой пшеницей - более 100 %. Баланс элементов питания в опыте с картофелем складывается отрицательный с интенсивностью 33-36 % за счет большего выноса элементов питания, который не покрывается за счет приходных статей. Таким образом, при возделывании картофеля необходимо дополнительное внесение минеральных удобрений для возмещения выноса элементов питания и предотвращения деградации почвы. При возделывании яровой пшеницы на черноземах при урожайности ее 20-34 ц/га для создания бездефицитного баланса элементов питания достаточно внесения бурого угля в рекомендуемых дозах.

4. Энергетическая и экономическая оценка эффективности выращивания яровой пшеницы при использовании окисленных углей

Расчеты агрономической, экономической и энергетической эффективности применения удобрений позволяют наиболее точно,

объективно и всесторонне оценить систему удобрений в технологическом процессе возделывания сельскохозяйственных культур. Экономическую эффективность применения удобрений характеризуют двумя показателями: чистым доходом и рентабельностью. Яровая пшеница «Тулунская-12» при внесении окисленных бурых углей и 60 кг д.в. аммиачной селитры дала достоверную прибавку 2,6-5,3 ц/га зерна по сравнению с контролем, но затраты превышают стоимость продукции, и поэтому применение окисленных углей совместно с аммиачной селитрой нерентабельно.

В вариантах с внесением только углей достоверная прибавка зерна 2,2-4,1 ц /га. Самая большая прибавка получена в вариантах с внесением 0,8 и 1,0 т/га угля. Окупаемость в этих вариантах составила 4,2-5,0 ц зерна на 1 т угля, за счет него получено 24-25 % урожая. Рентабельность применения углей по вариантам 0,4-1,0 т/га варьируется от 28 до 42 %. Таким образом, применение окисленного угля при возделывании яровой пшеницы в «островной» лесостепи эффективно, полученные прибавки зерна окупают затраты на его внесение. Прирост энергии наиболее высокий (МДж/га) в вариантах с внесением 0,8 и 1,0 т углей и составляет 5395,7-5395,7. На единицу энергетических затрат получено 2,9-5,8 единицы энергии, содержащейся в прибавке урожая от удобрений. В вариантах 0,61,2 т/га углей с внесением аммиачной селитры КПД больше 1 с энергетической точки зрения внесение углей под пшеницу в агрофирме «Тисуль» эффективно, т. к. энергоотдача превышает единицу.

Яровая пшеница «Ирень» в вариантах с внесением окисленных бурых углей в лесостепи Кузнецкой котловины на примере АОЗТ «Береговой» дала прибавку зерна 3,4-11,3 ц/га и окупаемость составила 7-17 ц зерна на 1 т угля, за счет него получено 14,5-48,3 % урожая зерна. Расчет экономической эффективности использования углей в посевах яровой пшеницы в лесостепи Кузнецкой котловины приведен в таблице 5. Рентабельность применения окисленных бурых углей по вариантам варьируется от 62 до 101 %. Рентабельность в лесостепи Кузнецкой котловины выше, чем в «островной» лесостепи, что обусловлено более высокими прибавками урожая зерна и большей окупаемостью. Прирост энергии наиболее высокий (16061 МДж/га) в варианте с внесением 1 т углей. На единицу энергетических затрат получено 5,6-9,7 единицы энергии, содержащейся в прибавке урожая.

Таблица 5

Энергетическая эффективность бурых окисленных углей при производстве зерна яровой пшеницы в лесостепи Кузнецкой котловины

Показатель Контроле БУ 0,2 | БУ 0,4 | БУ 0,6 | БУ 0,8 | БУ1,0 | БУ 1,2

Экономическая эфе ективность использования бурых окисленных углей

Урожайность, ц/га 23,4 26,8 27,9 29,6 32,6 34,7 31,9

Прибавка урожая, ц/га 3,4 4,5 6,2 9,2 11,3 8,5

Окупаемость зерном тонны удобрений, ц - 17,0 11,3 10,3 11,5 11,3 7,0

Стоимость прибавки урожая, руб 1268,9 1679,4 2313,8 3433,4 4217,2 3172,2

Всего затрат, руб - 630,8 909,6 1280,3 1849,9 2281,8 1963,9

Чистый доход, руб /га 638,1 769,8 1033,5 1583,5 1935,4 1208,3

Рентабельность, % - 101 85 81 86 85 62

Энергетическая эффективность производства зерна

Затраты совокупной энергии на прибавку, МДж/га - 997 1192 1489 2005 2369 1907

Совокупный сбор энергии прибавки, МДж/га - 5545 7340 10112 15005 18430 13864

Прирост общей энергии, МДж/га - 4548 6148 8623 13000 16061 11957

Биоэнергетический КПД, ед - 5,6 6,2 6,8 7,5 9,7 7,3

С энергетической точки зрения технология возделывания яровой пшеницы с внесением окисленных углей в АОЗТ «Береговой» эффективна. Таким образом, дозы окисленных углей в опытах в почвенных округах определяются комплексом факторов. Использование этих удобрений при возделывании яровой пшеницы экономически целесообразно и эффективно, что подтверждается агрономической, экономической и энергетической эффективностью.

1. Окисленные каменные угли Талдинского месторождения по агрохимическим свойствам пригодны для использования в качестве гуминовых удобрений, так как они содержат большое количество высокогумусированного органического вещества, общего азота и обладают высокой емкостью поглощения. Повышенное содержание в них подвижных форм меди, свинца, никеля и хрома должно учитываться при расчете доз внесения.

2. Окисленные бурые угли Тисульского месторождения содержат 33,2 % гуминовых кислот, имеют высокое содержание общего азота, очень высокую емкость поглощения. Повышенное содержание в них марганца и хрома не является препятствием для применения в качестве удобрений в дозах до 1,2 т/га.

3. Внесение окисленных бурых углей на черноземах выщелоченных в дозах до 1,2 т/га положительно влияет на свойства почв, уменьшает кислотность, увеличивает содержание в почвах

подвижного калия и фосфора, снижает концентрацию подвижных форм тяжелых металлов: кадмия, свинца, цинка и хрома.

4. Отходы флотационного обогащения угля, содержащие более 50 % органического вещества, при внесении в качестве удобрений в дозах 3 т/га на серых лесных тяжелосуглинистых кислых почвах повышают урожай ячменя и овса на 11,8-12,5 % соответственно, а на фоне полного минерального удобрения - на 21,6-22,9 %. Химический состав зерна при этом практически не изменяется.

5. Окисленные бурые угли, внесенные в качестве удобрений, повышают урожайность зерна яровой пшеницы на черноземах выщелоченных в «островной» лесостепи Кемеровской области. Оптимальной является доза 0,8 т/га, прибавка урожайности составляет 23,6 % и по фону азота - 29,0 %. Внесение углей не ухудшает качество зерна пшеницы и не приводит к накоплению тяжелых металлов свыше установленной нормы.

6. На черноземах выщелоченных в лесостепи Кузнецкой котловины окисленные бурые угли при внесении под пшеницу в дозах 0,4-1,2 т/га повышают урожайность зерна и не ухудшают его качество. При этом снижается накопление свинца, кадмия, меди и цинка в нем. Наиболее оптимальными являются дозы 0,8-1,0 т/га, прибавки составляют 39,3-48,3 %.

7. На черноземах выщелоченных в лесостепи Кузнецкой котловины урожай картофеля повышается от внесения окисленных бурых углей в дозах 0,4-1,0 т/га на 6,4-10,0 %. Наиболее оптимальной дозой является 0,8 т/га. Внесение окисленных углей под картофель увеличивает содержание калия и азота в клубнях.

8. Использование окисленных углей в качестве удобрений экономически выгодно. Рентабельность на пшенице составляет в «островной» лесостепи - 28 - 42 % и в лесостепи Кузнецкой котловины -62-101%.

Предложения производству

Для рационального использования углесодержащих отходов и ресурсов выщелоченных черноземов в лесостепи Кузнецкой котловины и «островной» лесостепи рекомендуется внесение окисленных бурых углей в качестве удобрений в дозах 0,8-1,0 т/га как в чистом виде, так и по фону минеральных удобрений.

1. Просянников В. И. Применение углеотходов в качестве удобрений сельскохозяйственных культур: информ. лист / Кемеровский ЦНТИ. - Кемерово, 1985. - № 459-85. - 4 с.

2. Просянников В. И. Проблемы рекультивации гидроотвалов вскрышных пород Кузбасса // Экологические проблемы угольной промышленности Кузбасса: тезисы докладов Всесоюзной научно-технической конференции. - Междуреченск, 1989. - С. 61-63.

3. Просянников В. И. Сельскохозяйственная рекультивация гидроотвалов вскрышных пород в степной зоне Кемеровской области // Материалы Всесоюзной научно-практической конференции «Социально-экономические проблемы достижения коренного перелома в эффективности развития производительных сил Кузбасса». - Кемерово, 1989. - 94 с.

4. Степень загрязнения тяжелыми металлами г. Анжеро-Судженска (Кемеровская область) и прилегающих территорий /

B. И. Просянников, Г. Н. Орехова, Г. К. Агеенко, О. И. Просянникова // Материалы научно-практической конференции «Тяжелые металлы и радионуклиды в агроэкосистемах». - М., 1994. - С. 222-227.

5. Просянников В. И. Тяжелые металлы в почвах Кемеровской области // Материалы межрегиональной научно-практической конференции «Агрохимия: наука и производство». - Кемерово, 2004. -

6. Колосова М. М. Органоминеральные удобрения на основе бурого угля / М. М. Колосова, Г. Г. Котова, В. И. Просянников // Агрохимический вестник. -1999. -№4. - С. 13-14.

Подписано в печать 24 01 2007. Формат 60*84"/|б Бумага офсетная № 1. Печать офсетная. Усл. печ. л. 1,2 Тираж 100 экз Заказ № 28

Издательство «Кузбассвузиздат». 650043, г. Кемерово, ул. Ермака, 7. Тел 58-34-48

ГЛАВА I. ИСПОЛЬЗОВАНИЕ ОКИСЛЕННЫХ УГЛЕЙ В КАЧЕСТВЕ УДОБРЕНИЯ СЕЛЬСКОХОЗЯЙСТВЕННЫХ

1.1 Использование окисленных углей в сельском хозяйстве

1.1.1 Использование гуминовых удобрений

1.1.2 Органо-минеральные удобрения на основе углеотходов

1.1.3 Использование окисленных углей в качестве удобрения сельскохозяйственных культур

ГЛАВА II. УСЛОВИЯ, ОБЪЕКТЫ И МЕТОДЫ ИССЛЕДОВАНИЙ

2.1. Физико-географические условия, климатические особенности и 29 почвенный покров лесостепной зоны Кемеровской области

2.2. Объекты и методы исследований

2.3. Метеорологические условия в годы проведения опытов

ГЛАВА III. ВЛИЯНИЕ ОКИСЛЕННЫХ УГЛЕЙ НА ОБЕСПЕЧЕННОСТЬ ПОЧВ ЭЛЕМЕНТАМИ ПИТАНИЯ, УРОЖАЙНОСТЬ И КАЧЕСТВО ПРОДУКЦИИ 47 3.1. Агрохимические свойства окисленных углей

3.2 Химический состав и содержание тяжелых металлов в окисленных углях

3.3. Влияние окисленных углей на свойства почв

3.4. Влияние удобрений из углистых пород Кузнецкого бассейна на урожайность, качество сельскохозяйственной продукции

3.4.1. Влияние углеотходов на урожайность и качество зерна ячменя

3.4.2.Влияние углеотходов на урожайность и качество зерна овса

3.4.3 Влияние окисленных бурых углей на урожайность, качество зерна яровой пшеницы и потребление питательных элементов в «островной» лесостепи

3.4.4 Влияние окисленных углей на урожайность, качество зерна яровой пшеницы и картофеля в лесостепи Кузнецкой котловины

3.5. Баланс питательных веществ

ГЛАВА IV. ЭНЕРГЕТИЧЕСКАЯ И ЭКОНОМИЧЕСКАЯ ОЦЕНКА ЭФФЕКТИВНОСТИ ВЫРАЩИВАНИЯ ЯРОВОЙ ПШЕНИЦЫ

ПРИ ИСПОЛЬЗОВАНИИ ОКИСЛЕННЫХ УГЛЕЙ

Выводы, предложения Производству

Введение Диссертация по сельскому хозяйству, на тему "Эффективность применения окисленных углей в качестве удобрения сельскохозяйственных культур в лесостепной зоне Кемеровской области"

В сельском хозяйстве Кемеровской области в результате интенсивного использования земель снижаются запасы гумуса. За последние два десятилетия наблюдается отрицательный баланс гумуса и питательных веществ в пахотных почвах. Ежегодная потребность в органических удобрениях составляет около 3 млн. тонн. Удовлетворить ее за счет традиционных форм органики в настоящее время не возможно.

Источниками получения дополнительного органического вещества в качестве удобрений для сельского хозяйства области являются: окисленные в пластах бурые угли Канско-Ачинского угольного бассейна, окисленные в пластах каменные угли Кузбасса; углесодержащие отходы флотационного обогащения угля. Окисленные угли имеют широкий набор макро- и микроэлементов являются кладовой органического вещества, содержащего большое количество гуминовых кислот, которые по своему составу близки к почвенным.

Окисленные в пластах угли как бурые, так и каменные практически не используются в народном хозяйстве в качестве топлива или сырья для других отраслей и при добыче, угля открытым способом поступают в отвалы вместе со вскрышными породами. Количество окисленных углей оценивается по каждому месторождению только при детальной разведке и разработке, но оно огромно, На разрезах Кузбасса объёмы окисленных углей поступающих в отвалы составляют десятки миллионов тонн ежегодно.

При обогащении угля образуется большое количество углесодержащих отходов. Ежегодный выход отходов флотационного (мокрого) обогащения угля в Кузбассе составляет миллионы тонн. Они складируются в хвостохранилища, где окисляются в условиях атмосферы и в настоящее время практически не используются.

Размещение окисленных углей и углеотходов является серьезной проблемой для Кузбасса. Окисленные угли, складируемые в отвалах, горят, вызывая загрязнение атмосферы, под углеотходы занимаются сотни гектаров плодородных земель.

Окисленные угли содержат до 70% органического вещества, в т. ч. отходы флотации 20-60%, содержание СаО и в них достигает 30-40% от минеральной части. Они являются хорошим сорбентом, имеют щелочную реакцию (рН- 7,3-7,6). Благодаря этим свойствам окисленные угли возможно использовать как удобрения.

Поэтому исследования по использованию окисленных углей в качестве удобрений сельскохозяйственных культур в Кемеровской области отличаются особой актуальностью.

Цель исследований - изучение возможности и эффективности применения окисленных углей в качестве удобрения зерновых культур и картофеля в лесостепной зоне Кемеровской области. Задачи:

Дать характеристику окисленным углям как удобрениям;

Выявить влияние внесения окисленных углей на валовое содержание тяжелых металлов и их подвижных соединений в почвах;

Изучить влияние различных доз окисленных углей на урожайность и качество сельскохозяйственных культур;

Установить влияние различных доз окисленных углей на накопление и вынос основных элементов минерального питания;

Определить содержание тяжелых металлов в продукции при применении окисленных углей;

Определить энергетическую и экономическую эффективность окисленных углей в качестве удобрения изучаемых культур.

Научная новизна. Впервые на основании комплексных исследований обосновано применение окисленных углей в качестве удобрения сельскохозяйственных культур в условиях лесостепной зоны Кемеровской области. Установлены оптимальные дозы внесения окисленных углей для получения урожая с соответствием его качества нормативам по безопасности продукции. Определено влияние окисленных углей на потребление элементов питания и тяжелых металлов яровой пшеницей.

Практическая значимость. Разработаны практические рекомендации по применению окисленных углей в качестве удобрения под сельскохозяйственные культуры. Рекомендованы дозы внесения окисленных углей для получения экологически чистой растениеводческой продукции. Показан баланс элементов питания. Определена биоэнергетическая, агрономическая и экономическая эффективность удобрения яровой пшеницы окисленными углями.

Апробация. Основные положения работы докладывались и обсуждались на областных и районных агрономических совещаниях с 1985 по 2006 гг. На всесоюзной научно-практической конференции «Социально-экономические проблемы достижения коренного перелома в эффективности развития производительных сил Кузбасса» (Кемерово, 1989), на всесоюзной научно-технической конференции «Экологические проблемы угольной промышленности Кузбасса» (Междуреченск, 1989), на межрегиональной научно-практической конференции «Агрохимия: наука и производство» (Кемерово, 2004), на научно-практических конференциях «Тенденции и факторы развития агропромышленного комплекса Сибири» (Кемерово, 2005; 2006), на совещаниях специалистов агрохимической службы России.

Защищаемые положения:

1. Применение окисленных углей в качестве удобрения улучшает обеспеченность почвы подвижными элементами питания;

2. Удобрение зерновых культур и картофеля окисленными углями повышает урожайность и качество продукции;

2. Применение окисленных углей в лесостепной зоне Кемеровской области энергетически и экономически выгодно.

Структура и объем работы. Диссертация состоит из введения, 4 глав, выводов и рекомендаций производству, списка литературы. Содержание изложено на 125 страницах машинописного текста, включает 53 таблицы, 7 рисунков. Библиографический список состоит из 190 наименований, из них 12 на иностранном языке. При оформлении диссертационной работы использованы возможности компьютерной графики, текстового редактора Word.

Заключение Диссертация по теме "Агрохимия", Просянников, Василий Иванович

107 Выводы

1. Окисленные каменные угли Таллинского месторождения по агрохимическим свойствам пригодны для использования в качестве гуминовых удобрений, так как они содержат большое количество высокогумусированного органического вещества, общего азота и обладают высокой емкостью поглощения. Повышенное содержание в них подвижных форм меди, свинца, никеля и хрома должно учитываться при расчете доз внесения.

2. Окисленные бурые угли Тисульского месторождения содержат 33,2% гуминовых кислот, имеют высокое содержание общего азота, очень высокую емкость поглощения. Повышенное содержание в них марганца и хрома не являются препятствием для применения в качестве удобрений в дозах до 1,2 т/га.

3. Внесение окисленных бурых углей на черноземах выщелоченных в дозах до 1,2 т/га положительно влияет на свойства почв, уменьшает кислотность, увеличивает содержание в почвах подвижного калия и фосфора, снижает концентрацию подвижных форм тяжелых металлов: кадмия, свинца, цинка и хрома.

4. Отходы флотационного обогащения угля, содержащие более 50% органического вещества, при внесении в качестве удобрений в дозах 3 т/га на серых лесных тяжелосуглинистых кислых почвах повышают урожай ячменя и овса на 11,8-12,5% соответственно, а на фоне полного минерального удобрения на 21,6-22,9%. Химический состав зерна при этом практически не изменяется.

5. Окисленные бурые угли, внесенные в качестве удобрений, повышают урожайность зерна яровой пшеницы на черноземах выщелоченных в «островной» лесостепи Кемеровской области. Оптимальной является доза 0,8 т/га, прибавка урожайности составляет - 23,6% и по фону азота - 29,0%. Внесение углей не ухудшает качество зерна пшеницы и не приводит к накоплению тяжелых металлов свыше установленной нормы.

6. На черноземах выщелоченных в лесостепи Кузнецкой котловины окисленные бурые угли при внесении под пшеницу в дозах 0,4-1,2 т/га повышают урожайность зерна и не ухудшают его качество. При этом снижается накопление свинца, кадмия, меди и цинка в нем. Наиболее оптимальными являются дозы 0,8-1,0 т/га, прибавки составляют 39,3-48,3%.

7. На черноземах выщелоченных в лесостепи Кузнецкой котловины урожай картофеля повышается от внесения окисленных бурых углей в дозах 0,4-1,0 т/га на 6,4-10,0%. Наиболее оптимальной дозой является 0,8 т/га. Внесение окисленных углей под картофель увеличивает содержание калия и азота в клубнях.

8. Использование окисленных углей в качестве удобрений экономически выгодно. Рентабельность на пшенице составляет в «островной» лесостепи-28-42% и в лесостепи Кузнецкой котловины-62-101%.

Предложения производству

Для рационального использования углесодержащих отходов и ресурсов выщелоченных черноземов в лесостепи Кузнецкой котловины и «островной» лесостепи рекомендуется внесение окисленных бурых углей в качестве удобрений в дозах 0,8-1,0 т/га, как в чистом виде, так и по фону минеральных удобрений.

Из окисленных каменных углей Кузбасса возможно производство гуминовых удобрений.

Библиография Диссертация по сельскому хозяйству, кандидата сельскохозяйственных наук, Просянников, Василий Иванович, Барнаул

1. Агафонов Е.В. Тяжелые металлы в черноземах Ростовской области. Тяжелые металлы и радионуклиды в агроэкосистемах. М.: ГУ КПК Минтопэнерго РФ, 1994. - С. 22-26.

2. Агроклиматические ресурсы Кемеровской области. /Отв. редактор Черникова.- JL: Гидрометеоиздат, 1973. 141 с.

3. Агроклиматический справочник по Кемеровской области. /Отв. редактор Пахневич. -JL: Гидрометеоиздт, 1959. 133 с.

4. Александрова JI.H. Методы определения оптимизации содержания гумуса в пахотных почвах / JI.H- Александрова, О.В. Юрлова //Почвоведение.- 1984. -№8.- С.21-27.

5. Александрова JI.H. Органическое вещество почвы и азотное питание растений // Почвоведение. 1977.- № 5. - С. 31-38.

6. Алексеев Ю.В. Тяжелые металлы в почвах и растениях.-JL: ВО Агропромиздат Ленинградское отделение, 1987. 142 с.

7. Антипов-Каратаев И.Н. Влияние длительного орошения на процессы почвообразования и плодородие почв степной полосы Европейской части СССР/ И.Н. Антипов-Каратаев, В.Н. Филиппова- М.: Изд-во АН СССР, 1955.207 с.

8. Антонов И.С. Органо-минеральные фосфор содержащие удобрения/ И.С Антонов, H.A. Градобоева, Е.П. Чирятьева //Агрохимический вестник.- 2001.-№4.- С. 16-19.

9. Антонова О.И. О способах использования торфогуминовых удобрений Теллура под яровую пшеницу в Алтайском крае /О.И. Антонова, А.П. Дробышев, В.Г. Антонов //Материалы конференции «Применение гуминовых удобрений в сельском хозяйстве»,- Бийск, 2000.- С. 5-9.

10. Антонова О.И. Физиолого-агрохимические аспекты повышения продуктивности агроценозов Алтайского края. Автореф. дис. . д-ра с.-х. наук.-Барнаул, 1997.- 33 с.

11. И. Барбер С.А. Биологическая доступность питательных веществ в почве. Пер. с английского.- М.: Агропромиздат, 1988. 376 с.

12. Бельчикова Н.П. Органическое вещество почв различной степени окультуренности // Агрохимия.-1965.-№2.-С. 98-109.

13. Богословский В.Н. Системный анализ применения гуматов в России / В.Н. Богословский, Б.В. Левинский //Агрохимический вестник. -2005.- №3. С. 20-21.

14. Бомбер З.А. Почвенный покров и зональные почвы Северо-Западной части Кемеровской области. Автореф. дис. . канд. с.-х. наук.- М., 1968. 32 с.

15. Бурлакова JI.M. Плодородие Алтайских черноземов в системе агроценозов. Новосибирск: Изд-во «Наука» Сибирское отделение, 1984.-199 с.

16. Бурлакова Л.М., Морковкин Г.Г. Антропогенная трансформация почвообразования и плодородия черноземов в системе агроценозов // Агрохимический вестник, 2005.- №1.- С. 2-4.

17. Васильков А.Н. Влияние гумата «Плодородие» на продуктивность ячменя / А.Н. Васильков, Е.Г. Ватазин, B.C. Виноградов, Ю.В. Смирнова // Агрохимический вестник.-2002.-№1.- С. 17.

18. Виноградов А.П. Геохимия редких и рассеянных элементов в почвах. М.: Изд-во АН СССР, 1957.- С. 237.

19. Виноградский С.Н. Микробиология почвы (проблемы и методы).- М.: Изд-во АН СССР, 1952.- С. 145-326.

20. Власюк П.А. Улучшение условий питания растений отходами бурых углей // Сборник «Гуминовые удобрения, теория и практика их применения».- Харьков: Изд-во Харьковского ун-та, 1957. ч.1.-С. 127-144.

21. Возбуцкая А.Е. Роль почвенного поглощенного аммония в азотном питании растений // Почвоведение. 1980 -. № 2. - С. 50-55.

22. Галлей Г.В. Вегетационные опыты с ячменем на породах шахт Западного Донбасса: Автореф. дис. канд. с.-х. наук. Киев, 1971.- 24 с.

23. Гамзиков Г.П. Азот в земледелии Западной Сибири М.: Издательство «Наука», 1981.-267 с.

24. Геология месторождений угля и горючих сланцев СССР. / Отв. ред. Рябоконь А.Ф. М.: Недра, 1964.- т.8. - 700 с.

25. Гигиенические требования безопасности и пищевой ценности пищевых продуктов. Санитарно-эпидемиологические правила и нормативы. СанПиН 2.3.2. 1078 -01.-М.: ФГУП «ИнтерСЭН», 2002.- 168 с.

26. Глунцов Н.М. Органоминеральное удобрение «Универсальное» для выращивания рассады огурца / Н.М. Глунцов, А.П. Примак, Н.В. Яковлева // Плодородие. 2002.- №3.- 6 с.

27. Гончарова H.A. Влияние углистых пород, применяемых в качестве удобрений на свойства дерново-подзолистых почв и урожайность сельскохозяйственных культур. Отчет сельскохозяйственной академии им. К.А. Тимирязева. М. 1981 .- 122 с.

28. Гончарова H.A. Почвенно-геохимическая характеристика опытного поля Пермской ГСХ и анализ вещественного состава углистых пород, используемых в качестве удобрений. Отчет сельскохозяйственной академии им. К.А. Тимирязева. М.: 1979. - 108 с.

29. ГОСТ 13586.5- 93. Зерно. Методы определения влажности.- М.: Изд-во стандартов, 1993.- 5 с.

30. ГОСТ 26213-84, 91. Почвы. Методы определения органического вещества. М.: Изд-во стандартов, 1984.- 6 с.

31. ГОСТ 26657-85. Корма, комбикорма и комбикормовое сырьё. Методы определения содержания фосфора.- М.: Изд-во стандартов, 1985.- С. 1-9.

32. ГОСТ 26657-97. Корма, комбикорма и комбикормовое сырьё. Методы определения содержания фосфора.- М.: Изд-во стандартов, 1997.- С. 1-9.

33. ГОСТ 13496.4-84. Корма, комбикорма, комбикормовое сырьё. Методы определения содержания азота, белка и сырого протеина. М.: Изд-во стандартов, 1984.-С. 29-45.

34. ГОСТ 13496.4-93. Корма, комбикорма, комбикормовое сырьё. Методы определения содержания азота, белка и сырого протеина. М.: Изд-во стандартов, 1993.-С. 29- 45.

35. ГОСТ 13586.1-68. Зерно. Методы определения количества и качества клейковины в пшенице.- М.: Изд-во стандартов, 1968.- 6 с.

36. ГОСТ 17.4.1.02-83. Почвы. Классификация химических веществ для контроля загрязнения. М.: Изд-во стандартов, 1984.- 4 с.

37. ГОСТ 26204-84, 91. Почвы. Определение подвижных соединений фосфора и калия по методу Чирикова в модификации ЦИНАО.-М.: Изд-во стандартов,1984.- 6 с.

38. ГОСТ 26212-84. Почвы. Определение гидролитической кислотности по методу Каппена. М.: Изд-во стандартов, 1984.- 6 с.

39. ГОСТ 26424-85. Почвы. Метод определения ионов карбоната и бикарбоната в водной вытяжке. М.: Изд-во стандартов, 1985.- 5 с.

40. ГОСТ 26425-85. Почвы. Метод определения иона хлорида в водной вытяжке. М.: Изд-во стандартов, 1985.- 7 с.

41. ГОСТ 26426-85. Почвы. Метод определения иона сульфата в водной вытяжке. М.: Изд-во стандартов, 1986.- 5 с.

42. ГОСТ 26427-85. Почвы. Метод определения ионов натрия и калия в водной вытяжке. М.: Изд-во стандартов, 1985.- 7 с.

43. ГОСТ 26428-85. Почвы. Методы определения кальция и магния в водной вытяжке. М.: Изд-во стандартов, 1985.- 6 с.

44. ГОСТ 26483-85. Почвы. Приготовление солевой вытяжки и определение ее рН по методу ЦИНАО.- М.: Изд-во стандартов, 1985.- 4 с.

45. ГОСТ 26714-85. Определение зольности углей. М.: Изд-во стандартов,1985.-4 с.

46. ГОСТ 26715-85. Удобрение органические. Определение валового фосфора. -М.: Изд-во стандартов, 1985.- 4 с.

47. ГОСТ 26716-85. Почвы. Методы определения аммонийного азота. М.: Изд-во стандартов, 1985.- 5 с.

48. ГОСТ 26717-85. Удобрение органические. Определение валового азота. -М.: Изд-во стандартов, 1985.- 4 с.

49. ГОСТ 26718-85. Удобрение органические. Определение валового калия. -М.: Изд-во стандартов, 1985- 4 с.

50. ГОСТ 26951-86. Почвы. Определение нитратов ионометрическим методом.-М.: Изд-во стандартов, 1986.- 7 с.

51. ГОСТ 30504-97. Корма, комбикорма, комбикормовое сырье. Плазменно-фотометрический метод определения калия. М.: ИПК Изд-во стандартов, 1998.- 8 с.

52. ГОСТ 9517-76. Топливо твердое. Методы определения выхода гуминовы> кислот М.: Изд-во стандартов, 1976.- 4 с.

53. Грехова И.В. Эффективность применения гуминового препарата «Росток»/ И.В. Грехова, И.Д. Комиссаров // Сборник материалов научно-практической конференции,- Кемерово, 2005. С. 86-88.

54. Дополнение №1 к перечню ПДК и ОДК № 6229-91. Гигиенические нормативы ГН 2.1.7.020-94. -М.: Госкомсанэпиднадзор России, 1995.- 7 с.

55. Драгунов С.С. Органо-минеральные удобрения и химическая характеристика гуминовых кислот. //Сборник «Гуминовые удобрения теория и практика их применения». 1957. - С. 11-18.

56. Дьяконова К.В. Оценка почв по содержанию и качеству гумуса для производственных моделей почвенного плодородия (рекомендации). М.: ВО «Агропромиздат», - 1990. - 28 с.

57. Егоров В.В. Некоторые вопросы повышения плодородия почв // Почвоведение. 1981. -№10. - С. 74-79.

58. Ермохин Ю. И. Экономическая и биоэнергетическая оценка применения удобрений: Методические рекомендации /10. И. Ермохин, А.Ф. Неклюдов. -Омск, 1994.-44 с.

59. Ермохин Ю.И. Диагностика питания растений. Омск: Изд-во ОМГАУ, 1995.-207 с.

60. Ершов И.Ю. Органическое вещество биосферы и почвы.- Новосибирск: «Наука», 2004.- 102 с.

61. Жуков Г. А. Проблемы химизации земледелия Сибири. Новосибирск: изд-во «Наука», Сибирское отделение, 1985.- 158 с.

62. Закруткин В.Е. Особенности распределения РЬ в агроландшафтах Ростовской области / В.Е. Закруткин, Р.П. Шкафенко // Сборник «Тяжелые металлы в окружающей среде».- Пущино, 1996.- С. 47-48.

63. Зеленин В.М. Испытание углистых пород на овощных культурах: отчёт о НИР/ Пермский СХИ им. Д.Н. Прянишникова.- Пермь, 1982.- 41 с.

64. Зимина А.В. Состав и свойства органо-минеральных углегуминовых удобрений /А.В. Зимина, Я.М. Амосова, И.Н. Скворцова //Агрохимический Вестник.- 1997. -№6.- С. 6-8.

65. Золотарева Б.Р. Содержание и распределение тяжелых металлов (свинца, кадмия, ртути) в почвах Европейской части СССР/ Б.Р. Золотарева, И.И. Скрипниченко // Сборник «Генезис, плодородие и мелиорация почв». Пущино, 1980.-С. 77-90.

66. Ильин В.Б. Микроэлементы и тяжелые металлы в почвах и растениях Новосибирской области / В.Б. Ильин, А.И. Сысо- Новосибирск: СО РАН, 2001.-229 с.

67. Ильин В.Б. Тяжелые металлы в системе почва растение. - Новосибирск: Изд-во «Наука», 1991.-150 с.

68. Ильичев А.И. География Кемеровской области / А.И. Ильичев, Л.И. Соловьев. Кемерово: «АО Кемеровское книжное издательство», 1994. - 366 с.

69. Инструкция и нормативы по определению экономической и энергетической эффективности применения удобрений.- М.: ЦИНАО, 1987.- 44 с.

70. Интегрированное применение удобрений в адаптивно-ландшафтном земледелии в нечерноземной зоне Европейской части России (Практическое руководство). Под общей редакцией Л.М. Державина. М.: ВНИИ А, 2005. 160 с.

71. Исхаков Х.А. Бурый уголь как комплексное удобрение / Х.А. Исхаков, Г.С Михайлов, В.Д. Шимотюк // Вестник / Куз ГТУ. Кемерово, 1998. - № 5. - С. 69-71.

72. Калугин В.А. Солома и жидкий навоз как удобрение под картофель // Тр./ Кемеровская ГСХОС.- Кемерово, 1977. выпуск IX. - С. 23-28.

73. Караваев П.М. О расчёте состава гуминовых кислот / П.М. Караваев, Д.Д. Зыков // Химия твёрдого топлива.- 1980,- №5.- С. 95-100.

74. Ковда В.А. Микроэлементы в почвах Советского Союза / В.А. Ковда И.В. Якушевская А.Н. Тюрюканов М.: Колос, 1959.- 67 с.

75. Ковда В.А. Основы учения о почвах.- М.: Изд-во «Наука», 1973.- 447 с.

76. Ковда В.А. Черноземы и урожай // Мелиорация и орошение почв равнинного Кавказа.-М.: Наука, 1986.-С. 16-21.

77. Колосова М.М. Органо-минеральные удобрения на основе бурого угля / М.М. Колосова, Г.Г. Котова, В.И. Просянников // Агрохимический вестник.-1999.- №4.- С.13-14.

78. Кольцов А.Х. Эффективность торфяных удобрений // Проблемы использования торфяных ресурсов Сибири и Дальнего Востока в сельскохозяйственном производстве.- Новосибирск: РПО СО ВАСХНИЛ, 1983.-С. 22-23.

79. Кононова М.М. Гумус главнейших типов почв СССР, его природа и пути образования // Почвоведение. 1956. - № 3. - С. 18-30.

80. Кононова М.М. Органическое вещество и плодородие почв // Почвоведение. 1984. -№ 8. - С. 6-20.

81. Кононова М.М. Органическое вещество почвы, его природа, свойства и методы изучения. -М.: Изд-во АН ССР. -1963. 314 с.

82. Кононова М.М. Проблема почвенного гумуса и современные задачи его изучения.- М.: Изд-во АН ССР. -1963. 390 с.

83. Кононова М.М. Ускоренные методы определения состава гумуса минеральных почв / М.М. Кононова, Н.П. Бельчикова // Почвоведение. 1961. -№ 10.-С. 75-87.

84. Кочергин А.Е. Условия азотного питания зерновых культур на черноземах Западной Сибири // Агробиология. 1956. - № 2. - С. 76-88.

85. Красницкий В.М. Агроэкотоксикологическая оценка агроценозов. Омск: Изд-во Ом ГАУ, 2001.-67 с.

86. Кулаковская Т.Н. Почвенно-агрохимические основы получения высоких урожаев. Минск: Ураджай, 1978.- 129 с.

87. Кухаренко Т.А. Гуминовые кислоты различных твердых горючих ископаемых и возможность их использования в качестве сырья для производства гуминовых удобрений // Гуминовые удобрения теория и практика их применения.-Харьков, 1957.-С. 19-27.

88. Кухаренко Т.А. Об определении понятия и классификации гуминовых кислот//Химия твердого топлива.- 1979. -№5.- С. 3-11.

89. Кухаренко Т.А. Окисленные в пластах бурые и каменные угли. -М.: «Недра», 1972.-216 с.

90. Кухаренко Т.А. Структура гуминовых кислот их биологическая активность и последействие гуминовых удобрений // Химия твердого топлива.- 1976. №2.-С. 24-30.

91. Ларина В.А. Углегуминовые удобрения в почвенно-климатических условиях Восточной Сибири // Сборник «Гуминовые удобрения. Теория и практика их применения».- 1968.- ч.Ш,- С. 339-348.

92. Левинский Б.В. Гуматы калия из Иркутска и их эффективность / Б.В. Левинский, Г.А. Калабин, Д.Ф. Кушнарёв, М.В. Бутырин // Химия в сельском хозяйстве.-1997. №2.- С. 30-32.

93. Лучник H.A. Испытание гумата «Плодородие» в Костромской области //Агрохимический вестник.- 2002.- №1.- С. 6-13.

94. Лучник H.A. Эффективность гумата «Плодородие» //Агрохимический вестник.-2004.-№1.-С. 18-21.

95. Лыков A.M. Гумус и плодородие почвы.- М.: Московский рабочий, 1985.192 с.

96. Лыков A.M. Органические вещества и плодородие дерново-подзолистых почв в условиях интенсивного земледелия. Автореф. дис. . д-ра с.-х. наук.- М, 1976.- 197 с.

97. Лыков A.M. Органическое вещество как фактор эффективного плодородия почвы / A.M. Лыков, В.А. Черников // Сельское хозяйство за рубежом. 1978. -№9.-С. 2-5.

98. Лыков A.M. Прогнозирование режима органического вещества в интенсивно используемой дерново-подзолистой почве / A.M. Лыков, И.М. Ишевская, В.В. Круглов //Вестник с.-х. науки.- 1977. № 4. - С. 103-111.

99. Макаров Б.Н. Газовый режим почвы. -М.: Агропромиздат, 1988. 105 с. ЮЗ.Матаруева B.C. Действие гуматов на комплекс «Растение- Микрофлора» / B.C. Матаруева, B.C. Виноградова//Агрохимический вестник.-2002.-№1.- С.-15-16.

100. Методика определения экономической эффективности использования в сельском хозяйстве результатов научно-исследовательских и опытноконструкторских работ, новой техники, изобретений и рационализаторских предложений. М., 1984. - 104 с.

101. Методические указания по определению баланса питательных веществ азота, фосфора, калия, гумуса, кальция.- М.,2000.- 25 с.

102. Методические указания по определению тяжелых металлов в кормах, растениях и их подвижных соединений в почвах. М.: ЦИНАО, 1993.- 40 с.

103. Методические указания по определению тяжелых металлов в почвах сельскохозяйственных угодий и продукции растениеводства. М.: ЦИНАО, 1998.- 62 с.

104. Методические указания по определению тяжелых металлов в почвах сельхозугодий и продукции растениеводства.- М.: ЦИНАО, 1992.- 61 с.

105. Методические указания по определению экономической эффективности удобрений в производственных опытах. М., 1974.- 32 с.

106. Милащенко Н.З. Расширенное воспроизводство плодородия почв в интенсивном земледелии Нечерноземья.- М, 1993.- 825 с.

107. Минеев В.Г. Биологическое земледелие и минеральные удобрения / В.Г. Минеев, Б. Дебрецени, Т. Мазур.- М.: Колос, 1993.- 415 с.

108. Минеев В.Г. Агрохимия: учебник для высших учебных заведений.- 2-е изд.- М.: Изд-во Московского университета. Изд-во «КолосС», 2004.- 720 с.

109. Минеев В.Г. Избранное /Сборник научных статей в 2- частях. М.: Изд-во МГУ, 2005.- 601 с.

110. Мязин Н.Г. Влияние удобрений на накопление нитратов и тяжелых металлов в почве и растений и на продуктивность звена зернопаропропашного севооборота / Н.Г. Мязин и др. //Агрохимия,- 2006,- №2,- С. 22-29.

111. Назарова Н.И., Курбатов М.С. Использование окисленных углей в качестве удобрений // Техническая информация (Химизация сельского хозяйствам-Фрунзе: Институт научно-технической информации, 1962.- №2.- С.35-43.

112. Назарюк В.М. Баланс и трансформация азота в агроэкосистемах. -Новосибирск: Изд-во СО РАН, 2002. 257 с.

113. Назарюк В.М. Система удобрения овощных культур в Западной Сибири. -Новосибирск: УД. СО АН СССР, 1980. 88 с.

114. Назарюк В.М. Эколого-агрохимические и генетические проблемы регулируемых агроэкосистем. Новосибирск: Изд-во СО РАН, 2004. - 240 с.

115. Носоченко B.C. Изменение состава и свойств бурых углей Ачинского месторождения при окислении в пласте // Химия твердого топлива.- 1970.- № 1. -С. 30.

116. Одербург A.C. Гранулированные органо-минеральные удобрения на основе торфа. // Агрохимический вестник. -1997. -№6. С. -10-11.

117. Панкратова К.Г. Обзор современных методов исследования гуминовых кислот / К.Г. Панкратова, В.И. Щелоков, Ю.Г. Сазонов // Плодородие.- 2005. -№4.-С. 19-24.

118. Перечень ПДК и ОДК № 6229-91. М., 1993.- 14 с.

119. Пономарева В.В. Гумус и почвообразование / В.В. Пономарева, Т.А. Плотникова. JI.: Изд-во Наука, 1980. - 222 с.

120. Приходько H.H. Ванадий, хром, никель и свинец в почвах Приенисейской низменности и предгорий Закарпатья //Агрохимия.- 1977. -№ 4. С. 95-98.

121. Просянников В.И. Применение углеотходов в качестве удобрений с/х культур: информ. лист. / Кемеровский ЦНТИ.- Кемерово, 1985.- № 459-85.- 4 с.

122. Просянников В.И. Проблемы рекультивации гидроотвалов вскрышных пород Кузбасса//Экологические проблемы угольной промышленности Кузбасса//Тезисы докладов Всесоюзной научно-технической конференции.-Междуреченск, 1989.- С. 61-63.

123. Просянников В.И. Провести испытания удобрений из углистых пород Кузнецкого бассейна в опытных условиях: отчет о НИР/ВНИИОСуголь. -Кемерово, 1985.- 33 с.

124. Просянников В.И. Тяжелые металлы в почвах Кемеровской области //Материалы межрегиональной научно-практической конференции «Агрохимия: наука и производство».- Кемерово, 2004. С.5-7.

125. Просянникова О.И. Техногенное загрязнение почв Кемеровской области //Агрохимический вестник. 2005. - №5.- С. 12-14.

126. Просянникова О.И. Агрохимические параметры деградаций почв: Дис. . канд. с.-х. наук.- Кемерово, 2004.- 162 с.

127. Просянникова О.И. Антропогенная трансформация почв Кемеровской области. Монография.- Кемерово, 2005.- 250 с.

128. Просянникова О.И. Почвенно-агрохимическое районирование юго-восточной окраины Западной Сибири, пути воспроизводства почвенного плодородия и повышения урожайности полевых культур: Дис. . д-ра с.-х. наук.- Кемерово, 2006. 351 с.

129. Прянишников Д.Н. Избр. тр. М.: Изд-во «Наука», 1976.- 591 с.

130. Реутов В.А. Использование бурых углей днепровского бассейна в качестве сырья для производства гуминовых удобрений в степной зоне УССР // Сборник

131. Гуминовые удобрения. Теория и практика их применения»,- Харьков: Изд-во Харьковского ун-та, 1962.- ч. II.- С. 445-467.

132. Ринькис Г.Я. Оптимизация минерального питания растений.- Рига: Зинатне, 1972.- 335 с.

133. Рудай И.Д. Агроэкологические проблемы повышения плодородия почв. М.: Россельхозиздат. 1985. - 256 с.

134. Руководство по анализам кормов.-М.: Колос, 1982.- 72 с.

135. Савинкина М.А. Золы Канско-Ачинских углей / М.А. Савинкина, А.Т. Логвиненко- Новосибирск: Изд-во Наука, 1979. 164 с.

136. Садовникова Л.К. Гуми-Башинком-нетрадиционное органические удобрение и мелиорант /Л.К. Садовникова, Т.Н. Болышева, В.И. Кузнецов//Агрохимический вестник.- 1997.- №6.- С. 11.

137. Самаров В.М. Методические указания по подготовке и защите дипломных работ студентами 5 курса агрономического факультета /В.М. Самаров, М.Т. Логуа, В.В. Баранова.- Кемерово, 2000. 55 с.

138. Самойлов Т.И. Изменение содержания гумуса и азота почвы при длительном систематическом применении удобрений в условиях овощного севооборота-Барнаул, 1970.-С. 15-23.

139. Синягин И.И. Применение удобрений в Сибири /И.И. Синягин, Н.Я. Кузнецов М.: Колос, 1979. - 374 с.

140. Сухов В.А. Изменение выхода гуминовых кислот при окислении бурого угля кислородом/В.А. Сухов, О.И. Егорова, В.Б. Замыслов, Т.Н. Соколова, А.Ф. Луковников//Химия твердого топлива.-1977.- № 6.- С. 38-43.

141. Танасиенко A.A., Влияние водной эрозии на свойства черноземов Кузнецкой котловины. Автореф. дис. канд с.-х. наук.- Баку, 1975. 23 с.

142. Трейман A.A. Медь и марганец в почвах, растениях и водах ландшафтов Салаира и Присалаирской равнины. Автореф. дис. . канд. с.-х. наук.-Новосибирск, 1970.- 34 с.

143. Трофимов С.С. Гумусообразование в техногенных экосистемах / Трофимов С.С. и др..- Новосибирск: Наука, 1986. 166 с.

144. Трофимов С.С. Экология почв и почвенные ресурсы Кемеровской области. Новосибирск: Изд-во «Наука» Сибирское отделение, 1975. - 299 с.

145. Туев H.A. Микробиологические процессы гумусообразования М.: Агропромиздат, 1989. - 239 с.

146. Тюрин И.В. Влияние зеленого удобрения на содержание гумуса и азота в дерново-подзолистой почве / И.В. Тюрин, В.К. Михновский // Изв. АН СССР. Сер. биол.- 1961.-№3.-С. 337-351.

147. Тюрин И.В. Из результатов работ по изучению состава гумуса в почвах СССР // Сборник «Проблемы советского почвоведения»,- М.: Изд-во АН СССР, 1940.- ч. II,-С. 173-188.

148. Тюрин И.В. К методике анализа для сравнительного изучения состава почвенного перегноя или гумуса // Тр. / Почвенный институт им. В.В. Докучаева,- М.: АН СССР, 1951.- т. 38.-С. 5-21.

149. Тюрин И.В. Органическое вещество почв и его роль в плодородии М.: Наука, 1965.-319 с.

150. Тюрин И.В. Органическое вещество почв и его роль в почвообразовании и плодородии // Учение о почвенном гумусе.- М.гСельхозгиз, 1937. 287 с.

151. Тяжелые металлы в системе почва- растение- удобрение./Под ред. М.М. Овчаренко. М., 1997.- С. 290.

152. Усенко В.И. Органические удобрения на черноземных почвах Западной Сибири / В.И. Усенко, В.К. Каличкин Новосибирск, 2003. - 156 с.

153. Хмелев В.А. Черноземы Кузнецкой котловины./В.А. Хмелев, A.A. Танасиенко.- Новосибирск: Изд-во Наука Сибирское отделение, 1983. 256 с.

154. Хохлова Т.И. Генетические и агрохимические особенности почв Кузнецкой лесостепи и закономерности распределения в них микроэлементов. Автореф. дис. . канд. С.-х. наук.- Томск, 1967. 16 с.

155. Христева JI.A. Гуминовые удобрения. Теория и практика их применения.-Днепропетровск, 1972.- С. 252-254.

156. Христева JI.A. Гуминовые кислоты углистых сланцев как новый вид удобрений. Автореф. дис. . д-ра с.-х. наук. Херсон, 1950. - 52 с.

157. Христева Л.А. Действие физиологически активных гуминовых кислот на растения при неблагоприятных внешних условиях.//Сборник «Гуминовые удобрения. Теория и практика их применения».- Харьков: Изд-во Харьковского ун-та, 19576. ч. 1.-С. 5-23.

158. Христева Л.А. Стимулирующее влияние гуминовой кислоты на рост высших растений и природа этого явления // Сборник «Гуминовые удобрения. Теория и практика их применения».- Харьков: Изд-во Харьковского ун-та, 1957в.-ч.1.-С. 56-94.

159. Христева Л.А. Углистые сланцы как один из возможных видов сырья для производства гуминовых удобрений // Сборник «Гуминовые удобрения. Теория и практика их применения».- Харьков: Изд-во Харьковского ун-та, 1957а,- ч.1.-С. 29-38.

160. Христева Л.А. Углистые сланцы как один из возможных видов сырья для производства гуминовых удобрений // Сборник «Гуминовые удобрения. Теория и практика их применения».- Киев, 1968.- ч. 3.

161. Христева Л.А., Ярощук И.И., Кузько М.А. Физиологические принципы технологии гуминовых удобрений // Сборник «Гуминовые удобрения. Теория и практика их применения».- Харьков: Изд-во Харьковского ун-та, 1957.- ч.1. С. 164-184.

162. Церлинг В.В. Диагностика питания сельскохозяйственных культур. М.: ВО «Агропромиздат», 1990,- 235 с.

163. Черникова М.И. Агрогидрологические свойства почв юго-восточной части Западной Сибири/М.И. Черникова, Л.Н. Кузьмина. Л., Гидрометеоиздат, 1965. -267 с.

164. Черных Н.А Закономерности поведения тяжелых металлов в системе почва- растение при различной антропогенной нагрузке. Дис. . д-ра с.-х. наук.- М., 1995.- 386 с.

165. Шапошникова И.М. Изменение гумусного фонда почв в Ростовской области/И.М. Шапошникова, И.Н. Листопадов // Почвоведение. 1984. - № 8. -С. 57-62.

166. Шатилов И.С. Всесторонний учет условий форсирования урожая // Вестник с.-х. науки.- 1980. -№ 2. С. 103-108.

167. Шашко Д.И. Агроклиматическое районирование СССР. М.: Колос, 1967. -335 с.

168. Шевченко И.Д. Влияние препаратов бурого угля на свойства чернозема и развитие растений в условиях Приазовья. Автореф. дис. . д-ра с.-х. наук.-Ростов, 1997.- 16 с.

169. Шимона Е. Интенсификация сельского хозяйства и проблема органического удобрения // Международный с.-х. журнал. -1980. -№ 2.-С. 42-44.

170. Шипитин Е.А. Гранулированные торфогуминовые удобрения ТОГУМ / Е.А. Шипитин, Булганина В.Н., Ю.И. Гержберг // Химия в сельском хозяйстве.-1994.-№5.-С. 14-15.

171. Шпирт М.Я. Неорганические компоненты твердых топлив/М.Я. Шпирт и др.- М. Химия, 1990. 239 с.

172. Экология Кемеровской области- Кемерово: Территориальный орган Федеральной службы государственной статистики по Кемеровской области, 2006.- 180 с.

173. Anderson Т.Н. Ratios of microbial biomass carbon to total organic carbon in arable soil / Т.Н. Anderson, K.H. Domsch // Soil Biol. Biochem. 1989 - Vol. 21, № 4.-P. 471-479.

174. Bowen H.J.M. Trace Elements in Biochemistry. N. Y- L: Acad. Pr., 1966. -241 P

175. Fallon P.D., Smith P., Szabo J., Pasztor L et al. Soil organic matter sustainability fnd agricultural managemenn-hredictijns an the regional level // Sustainable Management of Soil Organik Mutter. N.-Y.Cabi Publishing, 2001. P. 54-59.

176. Greenwood D.J. Denitrification in some tropical soils T.Aqric. Sei, vol 58. № 2. 1962.

177. Jenkinson D. S., Rayner J.H. The turnover of organis matter in some of Rothamsted classical experiments. Soil Sei., 1977, v.123, № 5, p. 298-305.

178. Knop K., Mastatir L. Mineralisie zungsinteu sität de Stikstoff aus Harnstoffe und Harnstoffe-Formaldegyd-Büngemitteln mit Veschudener Bodenzeaktion und Temperatur. Zbl. Infektionstrank leiden und Hygience. Abt. 2, 1970.

179. Kobus S. Wjlyn doclathu lupka i lustego pachoczago z wysobisk hopalni. Pamitmik Pulacochy- Praccing. 1971.

180. Kyuma K., Hussain A., Kawaguchi K. Tnhe nature of organismatter in soil organomineral complexes. Soil Sei. a. Plant Nutr., 1969, v.15, № 3, p.149-155.

181. McGill W.B., Cannon K.R., Robertson J., Cook, F.D. Dynamics of soil microbial biomass and water- soluble organis C in Breton I after 50 year of cropping to two rotations // Canad. J. Soil Sei. 1986. - Vol. 66, № 1. - P. 1-19.

182. Meek B.O., Mekenzic A.T. The effect of nitrate und organic mater on ocrobic gaseous Losses of nitrogen from Calcarons soil. Soil Sei Soc of America Proc, vol. 29, №2, 1970.

183. Sauerbeck D., Gonzales M. Fied- decomposition of C14-labelled plant residues in different soils of Germany and Costa-Rica. Internat. Symp. on Soil Organic Matter Studies. Braunshweig, FRG, 1976.

Плодородие почвы возродить, что корову вырастить - нужны уход и время.
Землю, как и корову, кормить надо - иначе не будет ни хлеба ни молока.

Вот так жили и живем, не ведая о том. что уход за землей -это. прежде всего, создание кормовой базы для почвенных животных - основных воспроизводителей плодородия почвы, то есть для червей. Раньше интуитивно (по догадке) теперь осознанно признается такая логическая связь в технологии возделывания земли. Осознание этого привело к новой технологии воспроизводства и резкого повышения плодородия почвы.

Рассылая заказчикам свою "Биотехнологию культивирования червей прошу их сообщать мне о достижениях и неудачах, делиться опытом возделывания земельных участков, показателями урожайности культур особенно на землях, удобренных биогумусом Счер-векомпостом). В ответ получено от них сотни писем, в которых представлен широкий спектр методов и примеров улучшения почвы. повышения ее плодородия, использования сортовых семян и способов их подготовки, сроков посева, технологий ухода за растениями и т.д. и т. п. И это со всей территории бывшего СССР.

Из писем вырисовывается следующая технология быстрого возрождения плодородия почвы, практически приемлемая для многих регионов.

На Руси картофель - это второй хлеб. Поэтому крестьяне, фермеры и дачники уделяют много внимания его выращиванию. Успех дела у всех разный и затраченный труд не всегда окупается, у других. наоборот, результаты отрадные. Это легко понять - ведь условия (земля, ее качество и труд) у всех разные.

Многие земледельцы после уборки урожая укрывают земельный участок подручной органикой у кого какая есть; навозом или компостом, или соломой, или сеном, или опилками, стружками, опавшей листвой из леса, или смесью из этих материалов или другой органикой в смеси с торфом, сапропелем и т.д.). Успех урожайности напрямую связан с количеством такой органики, ее должно быть в первый раз разослано по земле слоем 5-10 см. Многие заделывают ее в поверхностный слой почвы с помощью вил, мотыг, окучников, культиваторов. Но этот прием не строго обязателен, но желателен. Под слоем этой мульчи почва медленнее остывает и внесенная органика продолжает подвергаться переработке микробами и червями в гумусное удобрение. Этот процесс продолжается во многих регионах даже зимой, пока почва не промерзнет окончательно. Весной после схода снежного покрова, почва быстро прогревается и процесс разложения органики и превращения ее в гумус возобновляется. Земля остается рыхлой, воздухе- и водопроницаемой, в ней бурно развивается жизнь почвенного сообщества животных - основных воспроизводителей плодородия почвы. Как и для других домашних животных вы должны заготовить им корм не только на всю зиму, но и весну, до момента его воспроизводства естественным образом. Так и для червей почвы корма необходимо вносить в почву столько, чтобы хватило его до сле¬дующей осени. Только в этом случае почва будет плодородной, обес¬печенной необходимым количеством всех элементов питания растений.

Другие земледельцы вместо заготовки сухих органикосодержащих материалов для их внесения в почву используют выращивание зеленых удобрений - сидератов. Осенью после уборки урожая они высевают рожь с овсом и викой. Если осень теплая,то до ноября зе¬леные, всходы могут быть достаточно обильными, и зимой они спо¬собствуют снегозадержанию. Весной весь травостой заделывается в почву и черви и микрофлора обеспечиваются таким образом кормом на все лето, а почва обогащается гумусом.

А вот совет В.Алубина из Рязанской области. Учитывая тот факт, что картофель незаменимая культура, его порой выращивают из года в год на одном и том же месте. Через несколько лет урожайность картофеля значительно падает, несмотря на внесение органических и минеральных удобрений.

Чтобы сохранить урожайность картофеля на высоком уровне, он засевает половину участка зерновыми С рожь, ячмень, пшеница). На второй половине сажает картофель. Потом меняет их местами. Получается что-то вроде мини-севооборота. Зерновые можно убирать на зеленый корм скоту, можно перекапывать. В этом случае урожайность картофеля практически не снижается, а сохраняется на уровне целого участка, как если бы его не засевали зерновыми. К тому же, картофель не подвергается болезням и устойчив к почвенным вредителям. Такой способ посадки картофеля не только позволяет В.Алубину сохранять урожай, но и получать картофель отличного качества.

Третьи отдают предпочтение производству (заготовке) большого количества компоста и биогумуса (червекомпоста). Методика приведена в этой книге. Но многие ее приспособили для своих условий и дополнили своими особенностями и агробиологическими приемами с целью получения высоких урожаев картофеля.

Для примера сошлюсь на Владимира Поликарпова, овощевода. Его заметка "Картофель под "колпаком" напечатана в ж. "Новый фермер" С весна 1995г.) Он научился выращивать небывалые урожаи вкусного и здорового картофеля с использованием большого количества червекомпоста.

Для получения компоста он выбирает площадку с хорошими подходами к ней. Диаметр площадки 3 м. Заготовку компоста он ведет круглый год. Зимой скашивает болотную растительность (рогоз, камыш, тростник и все, что выше льда), которая при малом весе дает большой объем. Весной он проводит закладку основания; 50 см слой болотной растительности, затем слой дерна, чернозема, доломитку или мел, золу, и даже торф - все перемешивая. Поверх этого слоя он укладывает сено, траву, листву деревьев, хвойный опад. мох, хворост, опилки, стружки и другие органикосодержащие мате¬риалы. Затем насыпает слой песка до 5 см и после полива пускает туда дождевых червей. Высота кучи к концу лета достигает до 2-х м и более. Через каждые 60 см высоты слои повторяются. Компостная куча выстаивается целый год, доступная всем ветрам, дождю и сол¬нцу. По его мнению, она - фабрика удобрений и сборник всех отходов сада-огорода, кухни и пр. Основные производители биогумуса в ней - черви. Они - стимуляторы роста растений.

Теперь о главном, о картофеле. Он рекомендует отбирать клубни для посадки с осени; по весу. форме, качеству, вкусу, отношению к болезням и вредителям. Им испытано много сортов (из России, Америки. Израиля, Голландии и др.). Предпочтения какому-либо сор¬ту он не отдает, так как каждый имеет свои особенности.

Осенью после копки он промывает отобранные клубни настоем золы (1 кг золы на ведро воды). С Замечу; этот щелочной раствор - лучшее средство обеззараживания картофеля от вирусной инфекции. А.И.). После этого он ополаскивает картофель простой водой и вык¬ладывает его на 7 дней на солнце. Хранит семена в подвале при 2-3°С.

Весной, за 30-40 дней до высадки клубни выкладываются на прогрев на свету.
Участок он перекапывает с осени. После боронования весной делает мотыгой бороздку, в которую закладывает картошку. Расстояние между клубнями 10-25 см и между бороздами 20-50 см. Каждый клубень засыпает одним ведром компоста.

При таком методе он получает небывалые урожаи картофеля (30-35 мешков с сотки) необыкновенно вкусного, здорового, не утрачивающего своих пищевых достоинств до нового урожая. Нет нужды бороться с колорадским жуком - он боится здоровых растений как огня, его стихия - хилые неухоженные посадки.

В России, в основном, есть два вида участков. Первый, на котором картофель сажают много лет подряд из-за невозможности производить севооборот - мала площадь. Второй вид участка - недавно полученный, еще неокультуренный.

На первом картофель уже все вытянул, и урожай бывает низким. На втором судьба урожая вообще под вопросом. Метод В. Поликарпова проверен им и многими другими и годится в обоих случаях и для многих регионов.

Есть среди писем и такие, в которых сообщается о возрождении плодородия почвы дачных участков с использованием биогумуса в комбинации с минеральными (химическими) удобрениями. Регламентные работы при этом складываются в следующую схему. С осени почву рыхлят граблями и уничтожают сорняки. На подготовленную таким образом землю необходимо внести рассевом на каждую сотку земли 500 кг перегноя из парника, смешанного с 10 кг двойного суперфосфата, 3 кг хлористого калия и 2 кг калимагнезии. Затем это все запахивается на глубину 25 см.

Весной эту операцию повторить. Почва становится рыхлой. Посадку картофеля ведут с 1 по 10 мая в лунки глубиной 22 см, на дно каждой лунки желательно дать 1-1,5 стакана удобрительной смеси, состоящей из 10 л перегноя, 0.5 л золы. 1 ст. ложка двойного суперфосфата. 0.5 стакана нитроаммофоски и 0.5 стакана калимагнезии. Схема посадки; междурядье 50-55 см, расстояние между клубнями в рядке 20-23 см. После этого лунки засыпать перегноем на 3-4 см.

Уход за посадками многие из земледельцев начинают при высоте растений 10 см. Они опрыскивают их вечером 0.2% раствором марганцовки, а в начале бутонизации - 0.3% раствором аммиачной селитры. в который добавлена одна таблетка микроудобрений на 10 л воды.

Картофелеводы Закарпатья используют водный раствор суперфосфата и калимагнезии для внекорневой подкормки растений с целью ускорения образования и созревания клубней. За вегетацию проводят 2-3 таких полива из шланга с разбрызгивателем.

Результаты получают отличные до 1600 кг отборного картофе¬ля с сотки.
Ученый - картофелевод Александр Коршунов (ж. Новый садовод и фермер. 1996. N 1) также рекомендует для получения хорошего урожая картофеля вносить в почву необходимое количество макро- и микроэлементов в виде органических и минеральных удобрений и золы.

Непосредственно под картофель весной при перекопке он вносил компост из расчета 500 кг на сотку. Из минеральных удобрений использовались: мочевина - 1,1 кг, суперфосфат двойной -4.3 кг, калий хлористый - 4.0 кг на сотку. Удобрения он вносил вразброс с последующей заделкой на глубину 18-20 см.
По его мнению, огородник должен твердо усвоить; только на окультуренной почве достигается щедрая отдача от каждого килограмма минеральных удобрений. На слабо окультуренной почве (к примеру, с высокой кислотностью) химические удобрения могут иметь даже отрицательный эффект.

Он проводит посадку подготовленного (пророщенного и озеленного) картофеля с междурядьями 85 см при расстоянии между клубнями в рядке 25-50 см.

Густота посадки при этом составляет 470 штук на сотку. Растения в рядках быстро смыкаются и сами подавляют сорняки. А в ши¬роких междурядьях ботва смыкается позднее, листья продуктивнее работают на урожай, и картофелеводу легче провести высокое окучивание.

Свой урожай он убирал в конце первой декады сентября. Используя сорта советской селекции, в условиях Подмосковья удалось собрать 1575 кг высококачественных клубней с каждой сотки дачного участка в 1995 году. Урожай составил "сам - 35", Товарность картофеля 95%.

У садоводов - огородников иногда возникает желание сделать землю плодородной за один-два сезона. Возможно ли такое? Оказалось - возможно.

Например, для формирования урожая озимой пшеницы 50 ц/га в период ее интенсивного роста суточная потребность составляет более 200 кг/га С02. Около 70"% этого количества обеспечивается за счет С02, поступающей в приземный слой воздуха при минерализации гумуса, внесенных органических удобрений и растительных остатков.

Народный опытник Петр Матвеевич Пономарев (Ташкент) выращивал на своем участке по 250-500 центнеров пшеницы и ячменя с гектара (разумеется в пересчете на га). Но чтобы вырастить такой сверхурожай необходимо, чтобы в почве было много гумуса и других элементов питания для растений. У П.М.Пономарева родилась мысль использовать в качестве углеродного удобрения бурый каменный уголь. Он содержит в себе набор элементов питания, крайне необходимых растениям. В тонне такого угля содержится углерода -720-760 кг. водорода - 40-60, кислорода - 190-200. азота - 15-17. серы - 2-3 кг. много гуминовых кислот и других микроэлементов.

Перемолотый в муку уголь вносится в почву, где он успешно перерабатывается бактериями и в дальнейшем превращается в питательную среду для растений. Вносить угольную пыль лучше с осени вместе с перепревшим навозом или другой органикой в общем коли¬честве не менее 1 тонны на 100 кв.метров.

Вместо угля можно использовать сланцы в соотношении 200 кг угля (сланцев) на 800 кг компоста (40% влажности).

Такое использование угля и сланцев позволяло Пономареву накапливать в почвенном слое до 2% гумуса, что обеспечивало получение высоких урожаев не только зерновых, но и овощных культур, например, картофеля собирал по 20 мешков с сотки земли (Юрий Слащинин: "20 мешков картошки с каждой сотки". С.П. 1995).

Владимир Петрович Ушаков по образованию инженер-аграрник опытник более 40 лет отдал сельскому хозяйству. Результаты своих исследований С Подмосковье) он обобщил в своих брошюрах "Быть ли агротехнике разумной", Владивосток, 1989? "Урожайность можно и нужно увеличить в пять раз за один год". Москва, 1991. В них излагаются основные правила новой, разумной (органической) технологии земледелия, разработанные им. Автор на основании опытных данных убеждает читателей - земледелов, что отказ от порочной, ныне применяемой технологии и переход к разумной (органической) в первый же год дает пятикратный рост урожайности по всем без исключения культурам. В дальнейшем, при правильном уходе за землей, возможно, по его мнению, десятикратное и большее повышение урожайности. Урожайность например, картофеля на его участке вот уже много лет составляет 1400 ц/га.

На своих делянках он кроме навоза и компоста ничего не вносил. Нужных минеральных удобрений ему не удавалось найти (в частности. микроэлементов и других), а ядохимикаты по известным причинам не применял сознательно. Поэтому продукция получалась экологически чистой, и картофель при самом обычном хранении под полом в обычных закромах из досок, конечно же, не гнил совершенно и сохранялся до нового урожая. Причина - ежегодное возрастание гумуса в почве его делянок составляло 0.5% Это удивляет многих ученых - такой прирост гумуса за год никто никогда не наблюдал, а причина этого одна; никто и никогда у нас в стране не занимался живым веществом почвы, создающим гумус. А между тем оно бурно размножается на его делянках (и только на них) с разумной (органической) технологией. Вот только несколько данных, полученных им от ВИУА в конце 1985 года: на участке, где вносился навоз вразброс и работы велись по старой технологии, оказалось денитрификаторов 77000 штук в грамме почвы, нитрификаторов - 16000, клетчаткоразрушителей - 23000; там же, где применялась разумная технология и навоз вносился кучками, через восемь лет этих микроорганиз¬мов стало во много крат больше, а именно." денитрификаторов 920000, нитрификаторов - 260000, а клетчаткоразрушителей 2000000. За это же время количество червей в почве этих делянок возросло также многократно. Если перед началом работ (в 1985 году) на каждом квадратном метре почвы их насчитывалось в среднем 5 особей, а через те же 8 лет оказалось уже более 200. Ежегодно количество червей увеличивалось на 24 особи на квадратный метр. Вот и вся причина резкого увеличения количества гумуса в почве до 5 процентов за 8 лет.

Но бывало и так, что навоза у В. П. Ушакова не было. Тогда он готовил и вносил компост, т. е. смесь из разных органических отходов (трава, листья, ботва, кухонные отходы и прочее). Готовил компост так; все отходы растилал слоем толщиной 20 сантиметров, в виде грядки шириной в 1.5-2 м., поливал грядку водой из лейки и закрывал пленкой. Через каждые 2-3 дня, раскрыв пленку, производил рыхление и полив, а затем вновь закрывал пленкой. Продолжал эту работу около трех недель перед началом подготовки почвы. За это время в компосте появлялось огромное количество червей. Они перерабатывали органику в гумус - пищу для растений.

Основу компоста составляли отходы сада-огорода и опытных делянок. Например, кукуруза дала максимально 28 кг силосной массы с квадратного метра (то есть в пересчете. 900 центнеров кормовых единиц с гектара, а не 50, получаемых ныне на колхозных полях); подсолнечник выдал максимально 22 кг/м2. Стебли этих культур, а также початки кукурузы и корзинки подсолнечника после удаления из них зерен помещались в компостную кучу, также как и картофельная ботва, которая достигала по высоте до 1,5 метра со средним весом 6,5 кг/м2- солома собиралась до 4 кг/м2" Это как оказалось, впол¬не компенсировало недостающую органику в почве и позволяло из года в год наращивать гумусность почвы.

Зерновые В.П.Ушаков убирал, когда зерно имело восковую спелость и легко из колосьев вышелушивалось, но не осыпалось. Урожайность зерновых была разной; наивысший давала озимая рожь максимально 1,88 кг/м2 , ячмень - 1,6, пшница - 1,5 и овес - 1,4. С одного растения - куста собирали от 10 до 25 колосьев, каждый из которых давал около 3 г зерен; по обычной технологии собирали не более трех колосков с тощими зернами, вес которых в одном колоске не превышал одного грамма. Потому-то разумная технология и дала урожайность от "CAM-450" до "CAM-700", а по общеприменяемой она максимально составила "CAM-16".

На каждом стебле кукурузы, высота которых достигала трех метров (ежегодно), было 1-2 початка. Средний вес початка был около 400 г, а зерен в нем около 175 г, с квадратного метра собира¬лось около 3,5 кг зерен.

Внедрение органического земледелия на своих участках широко теперь используется дачниками и фермерами практически во всех регионах России. За последние четыре летних сезона урожайность овощей на их землях поднялась в 8-10 раз (картофель, огурцы, помидоры и др.). Но особенно их радует высокое качество выращиваемых овощей (великолепная сохраняемость и высокая устойчивость к заболеваниям у картофеля, свеклы, моркови и др.), ягод и фруктов. Они поверили в силу органического земледелия и считают излишним использование больших доз химических удобрений и пестицидов на своих участках земли. Автор желает им дальнейших успехов в деле возрождения и приумножения плодородия почвы своих земель и выражает уверенность в переходе на органическое земледелие всех земледельцев. Только это оздоровит почву, воду. корма и продукты питания, животных и людей.
Автора очень радуют сообщения из северных районов Тюменской области (Сургут, Мегион, Лангепас. Нефтеюганск), Томской области (Стрежевой, Колпашево), Якутии (Якутск, Мирный. Чурапча, Нерюнгри и др.). Магаданской области (Магадан, Ягодное), Камчатки (Петропавловск-Камчатский, Елизово). В них говорится, что использование биогумуса (червекомпоста) позволяет местным земледельцам выращивать практически все необходимые овощи: редис, са¬латы, морковь, свеклу, картофель, лук. многие ягоды: черника, голубика, морошка, земляника, малина и др.) и обеспечивать себя витаминной продукцией до нового урожая.

Из этого следует, что земледелие с помощью органических удобрений можно и нужно продвигать в северные регионы России и выращивать там необходимую пищевую и кормовую продукцию в достаточном количестве.

Есть еще одна интересная мысль: подлинным полиминеральным удобрением для растений возможно является гранит (перемолотый в муку). Это предположение исходит из идеи В.И.Вернадского о гранитной оболочке как области былых биосфер. По идее Вернадского, биогенные породы подвергаются метаморфизму из биосферы. "Гранитная оболочка земли есть область былых биосфер". (Вернадский В.И. Проблемы биогеохимии. - Труды БИОГЕЛ. ГЕОХИ. АН СССР, вып.16, с. 215).
Пока остается неизвестным на сколько оно будет эффективным. Известно другое: на гранитных плитах, валунах иногда видны четкие отпечатки корневой системы растений, что означает, что ферменты корневой системы растений способны растворять структуру гранита и использования его как источник минерального питания.